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Abstract
Children learn powerful internal models of the world around
them from a few years of egocentric visual experience. Can
such internal models be learned from a child’s visual experi-
ence with highly generic learning algorithms or do they re-
quire strong inductive biases? Recent advances in collect-
ing large-scale, longitudinal, developmentally realistic video
datasets and generic self-supervised learning (SSL) algorithms
are allowing us to begin to tackle this nature vs. nurture ques-
tion. However, existing work typically focuses on image-based
SSL algorithms and visual capabilities that can be learned from
static images (e.g. object recognition), thus ignoring temporal
aspects of the world. To close this gap, here we train self-
supervised video models on longitudinal, egocentric headcam
recordings collected from a child over a two year period in
their early development (6-31 months). The resulting models
are highly effective at facilitating the learning of action con-
cepts from a small number of labeled examples; they have fa-
vorable data size scaling properties; and they display emergent
video interpolation capabilities. Video models also learn more
robust object representations than image-based models trained
with the exact same data. These results suggest that important
temporal aspects of a child’s internal model of the world may
be learnable from their visual experience using highly generic
learning algorithms and without strong inductive biases.
Keywords: machine learning; self-supervised learning; video
learning; action recognition; developmental headcam data.

Introduction
Children develop sophisticated visual models of the world
early in their development. Whether this feat requires strong
innate inductive biases or whether it can be achieved simply
by applying highly generic but scalable learning algorithms
to a child’s visual experience is arguably one of the most sig-
nificant open questions in developmental psychology (Elman,
Bates, & Johnson, 1996; Spelke, 1994).

Recent advances in our ability to collect large-scale, longi-
tudinal video datasets recorded from the perspective of young
children over the course of their early development (Sullivan,
Mei, Perfors, Wojcik, & Frank, 2021) and the development
of highly effective generic self-supervised learning (SSL) al-
gorithms in machine learning (Caron et al., 2021; He et al.,
2022) are allowing us to finally begin to tackle this modern
version of the age-old nature vs. nurture question (Wood,
2024). Several recent works have already taken advantage
of these advances to try to understand what kinds of visual
capabilities can be learned from large-scale, developmen-
tally realistic video data using highly generic, state-of-the-
art SSL algorithms and without assuming strong inductive bi-
ases (Bambach, Crandall, Smith, & Yu, 2018; Orhan, Gupta,

& Lake, 2020; Orhan & Lake, 2024; Zhuang et al., 2021,
2022). These works typically use image-based SSL algo-
rithms and, as a result, only consider visual capabilities that
can be learned from static images, such as object recogni-
tion. However, the visual world is intrinsically temporal and
important aspects of it can only be learned if this temporal
dimension is taken into account. For example, the acquisition
of action concepts or the ability to predict the changes un-
folding in a visual scene both require temporal information.

Here, we address this shortcoming by training self-
supervised video models on a large-scale, longitudinal,
developmentally realistic video dataset, namely SAYCam
(Sullivan et al., 2021). We evaluate the capabilities of the
trained models on several downstream tasks, compare them
against a number of reference models, and provide both qual-
itative and quantitative insights into the learned video repre-
sentations. Code and models are available from the following
repository: https://github.com/eminorhan/video-models.

Methods
Training data
SAYCam. We use the SAYCam dataset as a realistic proxy
of the visual experiences of a developing child (Sullivan et al.,
2021). SAYCam is a large, longitudinal audiovisual dataset of
headcam recordings collected from three young children (S,
A, and Y) during the course of their early development (6-31
months). It contains 194, 141, and 137 hours of video from S,
A, and Y, respectively, for a total of 472 hours of video. The
data from each child typically consists of 1-2 hours of con-
tinuous, natural, uninstructed recordings per week. We train
models on the combined data from all three children (denoted
SAY below), as well as on data from child S only.

Kinetics-700. To investigate the effect of training data on
the model behavior and performance, we also train models
on the full Kinetics-700 dataset (Smaira et al., 2020) and a
randomly selected 200-hour subset of it (denoted Kinetics-
200h below). The latter contains roughly the same amount
of video data as child S in SAYCam and is intended as a
length-matched control for child S to isolate the effect of
data type alone. Kinetics-700 is a large and diverse dataset
of short YouTube clips representing 700 fine-grained action
categories such as playing poker, polishing furniture, cutting
cake, ironing hair, etc. The Kinetics-700 training set contains
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Figure 1: Illustration of the spatiotemporal MAE objective.
Top row shows the original sequence of frames (from child S
in SAYCam). Middle row shows the masked sequence, where
90% of the spatiotemporal “patches” are randomly masked
out. Bottom row shows the predictions from a model trained
on child S. The model is trained to predict the masked patches
from the visible patches at the pixel level.

536K video clips, each clip typically lasting shorter than 10
seconds, for a total of 1330 hours of video. Thus, compared to
SAYCam, the videos in Kinetics-700 are much more diverse
in content and have a much shorter time scale.

Model architecture
We use vision transformers (ViTs) as our model architec-
ture (Dosovitskiy et al., 2020). This choice is effectively
dictated by our choice of SSL algorithm, as described be-
low. We use a large 633M parameter model (ViT-H/14) in
all our experiments. We temporally subsample the videos at
a rate of 3.75 frames/second and feed the model input clips
consisting of 16 consecutive frames with a spatial resolution
of 224� 224 pixels. Each modeled clip is thus roughly 4.3
seconds long. These clips are divided into 2� 14� 14 three-
dimensional boxes or “patches” (i.e. 2 frames in the tempo-
ral dimension, 14� 14 pixels in the spatial dimensions). The
patches are then linearly projected onto a common patch em-
bedding space and separable (and learnable) spatial and tem-
poral position embeddings are added to the patch embedding
of each patch, helping to identify its spatial and temporal
position. The rest of the architecture is a standard trans-
former model operating on the �attened patch representa-
tions. Since this is a standard architecture, we refer the reader
to Feichtenhofer, Li, He, et al. (2022) for further details.

SSL algorithm
We use spatiotemporal masked autoencoders (MAEs) as our
SSL algorithm of choice (Feichtenhofer et al., 2022), which
is a straightforward extension of the image-based MAEs (He
et al., 2022) to video data. The basic idea in spatiotemporal
MAEs is to randomly mask out a large proportion (90%) of
the three-dimensional “patches” described above and to pre-
dict these masked patches from high-level representations of
the visible patches (Figure 1). An MAE consists of an en-
coder and a decoder, both vanilla transformer models. The
encoder only processes the visible patches and its output is
passed through the decoder, which is typically much smaller
than the encoder, to predict the values of the masked patches

Figure 2: Top-5 validation accuracy in the SSV2 (a) and
Kinetics-700 (b) action recognition tasks. Results are shown
for both 10-shot (left) and 50-shot conditions (right). Dashed
horizontal lines show the chance baseline. Orange rep-
resents the models pretrained with the child headcam
data. Cyan represents the models pretrained with Kinetics-
700 data. Magenta represents a purely image-based refer-
ence model. Green represents a reference model trained from
scratch on the downstream task only (no pretraining).

in the pixel space. In addition to being a highly ef�cient,
generic, state-of-the-art SSL algorithm for video represen-
tation learning, MAEs also have the advantage of requiring
very minimal data augmentation (we only use random re-
sized crops and horizontal �ips in the spatial domain). This
is relevant for our purposes, because SSL algorithms that re-
quire heavy data augmentation strategies make the input less
“human-like”.

Evaluation

Once the MAE models are pretrained with the child head-
cam data (or with other reference data), we evaluate the qual-
ity of the learned video representations through a number of
downstream tasks. As is standard with MAEs, we use su-
pervised �netuning in order to evaluate the models in down-
stream tasks. However, to ensure that the representations are
learned mostly through SSL (and not through supervised �ne-
tuning) and also in the interest of psychological plausibility,
we adopt a few-shot �netuning setting, where we only use a
small number of labeled examples to �netune the models.

For video-based evaluation, we consider two �ne-grained
action recognition tasks:Kinetics-700 and Something-
Something-V2 (SSV2) (Goyal et al., 2017). Kinetics-700
consists of short YouTube clips of 700 �ne-grained action
categories, whereas SSV2 contains short clips of people per-
forming 174 different classes of �ne-grained actions. The
main difference between Kinetics-700 and SSV2 is that in
SSV2, people performinstructedactions, where the objects
involved in the action are speci�ed and carefully varied across
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