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Abstract

In this paper, we study the problem of unsupervised ob-
ject detection from 3D point clouds in self-driving scenes.
We present a simple yet effective method that exploits (i)
point clustering in near-range areas where the point clouds
are dense, (ii) temporal consistency to filter out noisy unsu-
pervised detections, (iii) translation equivariance of CNNs
to extend the auto-labels to long range, and (iv) self-
supervision for improving on its own. Our approach, OYS-
TER (Object Discovery via Spatio-Temporal Refinement),
does not impose constraints on data collection (such as
repeated traversals of the same location), is able to de-
tect objects in a zero-shot manner without supervised fine-
tuning (even in sparse, distant regions), and continues to
self-improve given more rounds of iterative self-training. To
better measure model performance in self-driving scenar-
ios, we propose a new planning-centric perception metric
based on distance-to-collision. We demonstrate that our
unsupervised object detector significantly outperforms un-
supervised baselines on PandaSet and Argoverse 2 Sen-
sor dataset, showing promise that self-supervision com-
bined with object priors can enable object discovery in
the wild. For more information, visit the project website:
https://waabi.ai/research/oyster.

1. Introduction

When a large set of annotations are available, supervised
learning can solve the task of 3D object detection remark-
ably well thanks to the power of neural networks, as proven
by many successful object detectors developed in the past
decade [24,36,47,70]. However, since most existing data is
unlabeled, human annotations are currently the bottleneck
for data-driven learning algorithms, as they require tedious
manual effort that is very costly in practice. While there has
been some effort on using weaker supervision to train ob-
ject detectors [4, 57, 68], it is worth noting that human and
animal brains are able to perceive objects without explicit
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Near-range: dense point cloud with clear clusters

Long-range: sparse point cloud

Figure 1. Visualization of a sequence of five 3D point clouds. At
near range, the point clouds are very dense and we can clearly
distinguish clusters, motivating us to use prior knowledge. At far
range, the point clouds are quite sparse and the objects do not ap-
pear as obvious, leading us to explore zero-shot generalization.

labels at all [2]. This naturally inspires us to ask whether
we can design unsupervised learning algorithms that dis-
cover objects from raw streams of sensor data on their own.

Unsupervised object detection has long been studied in
computer vision, albeit in various forms. For instance, nu-
merous ways of unsupervised object proposals were consid-
ered as the first stage of an object detector [20]. These meth-
ods leverage a variety of cues including colors and edge
boundaries [1], graph structures [18], and motion cues [50].
While those methods are no longer popular in today’s object
detectors due to end-to-end supervised training, they offer
important intuitions of what an object is.

In recent years, unsupervised object detection has made
a comeback under the name of object-centric models [6,15,
33, 34, 38, 39, 58]. The essential idea is to train an auto-
encoder with a structured decoder such that the network
is forced to decompose the scene into a set of individual
objects during reconstruction. Most of those models only
show experiments on synthetic toy datasets, where the back-
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ground lacks any fine-grained details, and the foreground
objects have simplistic shapes and distinct colors. The rea-
son why object-centric models have struggled to scale to re-
alistic data is that their mechanism of object decomposition
is based on careful balancing of model capacities between
the foreground and background modules. Consequently, an
increase in model capacity, which is needed for real-world
data, breaks the brittle balance between modules and result
in a failure in scene decomposition. Unsupervised object
discovery in the wild remains an open challenge.

In this work, we study unsupervised object detection
from point clouds in the context of self-driving vehicles
(SDVs). This is a challenging task due to occlusion as well
as the sparsity of the observations particularly at range. We
refer the reader to Fig. 1 for an example. Despite its appeal,
unsupervised object detection from LiDAR has received lit-
tle attention. Recent work [66] exploits repeated traver-
sals of the same region to understand the persistence of a
point over time and discover mobile objects from that in-
formation. However, the assumption of repeated traversals
in acquiring point clouds restricts the applicability of the
method. Instead, we study the most generic setting of unsu-
pervised detection given any raw sequence of point clouds.

Our method OYSTER (Object Discovery via Spatio-
Temporal Refinement) carefully combines key ideas from
density-based spatial clustering, temporal consistency,
equivariance and self-supervised learning in a unified
framework that exploits their strengths while overcoming
their shortcomings. Firstly, we exploit point clustering to
obtain initial pseudo-labels to bootstrap an object detector
in the near range, where point density is high (see Fig. 1).
We then employ unsupervised tracking to filter out tempo-
rally inconsistent objects. Since point clustering does not
work well in the long-range where observations are sparse,
we exploit the translation equivariance of CNNs to train on
high-quality, near-range pseudo-labels and zero-shot gen-
eralize to long range. To bridge the density gap between
short and long-range at training vs. inference, we propose
a novel random LiDAR ray dropping strategy. Finally, we
design a self-improvement loop in which this bootstrapped
model can self-train. At every round of self-improvement,
we utilize the temporal consistency of objects to automati-
cally refine the detections from the model at the previous
iteration, and use these refined outputs as pseudo-labels
for training. Our experiments on Pandaset [63] and Ar-
goverse V2 Sensor [60] demonstrate that OYSTER clearly
outperforms other unsupervised methods, both under stan-
dard metrics based on intersection-over-union (IoU) and our
proposed metric based on distance-to-collision (DTC). We
hope that our work serves as a step towards building percep-
tion systems that automatically improve with more data and
compute without being bottlenecked by human supervision.

2. Related Work
In this section, we briefly review the literature on three

subfields that are closely related to unsupervised object de-
tection: object-centric models, unsupervised object pro-
posal (discovery), and open-set detection.

Object centric models: A promising path towards unsu-
pervised detection is broadly characterized as vision as in-
verse graphics: learning deep generative models with struc-
tured decoder (or renderer) such that the encoder needs to
decompose a scene into objects and parts and infer their
orientations. In the deep learning era, this type of mod-
els are usually called object-centric models. In the single-
image setting, many prior works have tried to use a mix-
ture latent to encourage object discovery, such as AIR [16],
Neural EM [22, 53], SCAE [34], SPAIR [10], MONet [6],
IODINE [21], GENESIS [15], SPACE [38], Generative
Neuro-Symbolic machine [28], and Slot Attention [39].
Some effort has also been made in the setting of 3D view
rendering, especially in light of recent progress in neu-
ral rendering models such as NeRF [40]: ObSuRF [51]
and Object Radiance Fields [67] try to combine Slot At-
tention with NeRF to discover objects given multi-view
inputs. Certain object-centric models have attempted to
take advantage of temporal and sequential information in
videos, such as Sequential AIR [33], SPAIR with track-
ing [11], SCALOR [29], physics as inverse graphs [27], SI-
MONe [31], and Flow Capsule [48]. Those methods have
only been shown to work on toy datasets.

Unsupervised Object Discovery: Many methods di-
rectly use various cues to discover objects without neces-
sarily using a generative model. Prior works have explored
Probabilistic Latent Semantic Analysis [49], object co-
segmentation [54], and a ranking based approach [55, 56].
For 2D object segmentation and object proposals, exist-
ing approaches include parametric min cut [8], selective
search [52], and MCG [46]. When we have access to videos
rather than just static images, motion information can be
leveraged for object discovery, by utilizing motion segmen-
tation [44], clustering the flow field [43], directly segment-
ing moving object for detection [19], or tracking and then
segmenting [62]. In the case where we have 3D point clouds
rather than an RGB image, prior techniques include point
clustering [14], shape analysis [32] and range-based analy-
sis [5]. Concurrently, [42] leveraged scene flow estimation
to generate seed labels for training an unsupervised LiDAR
detector. Our method initially applies point clustering, but
our core contribution is a learning-based method that can
iteratively self-improve. In contrast to our approach, [42]
relies on unsupervised scene-flow to detect objects and thus
is not able to detect static ones. Furthermore, it is limited
to short ranges where point cloud alignment methods [3] are
reliable. [66] does not need scene flow, but requires repeated
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Figure 2. Overview of OYSTER, our unsupervised detection method. In the initial bootstrapping phase (step 1-6), we train a CNN on
near-range point clustering results, and rely on translation equivalence of CNNs to produce pseudo-labels for full range. Our training applies
random ray-dropping as data augmentation, and uses temporal-consistency based filtering on pseudo-labels. In the self-improvement phase
(step 7), we propose a Track, Refine, Retrain, and Repeat framework that teaches an unsupervised detector to iteratively self-improve.

traversals of the same location. Concurrent work [59] re-
quires unsupervised scene flow and camera inputs for 3D
instance segmentation. Our method requires neither scene
flow, camera inputs, nor repeated traversals, so it can be di-
rectly applied to any LiDAR sequence.

Open-Set Detection: Another branch of methods deal
with a weakly supervised setting where the system is given
labels on certain known objects but is expected to discover
the unknown stuff on its own [12]. For 2D object detection,
prior art includes Bayesian approaches [45] and dropout
sampling for uncertainty estimation [41]. A new setting
called Open-World Object Detection has been proposed as
well [30], where the vision system sequentially receives
new labeled instances on long-tailed classes [30]. A De-
tection Transformer [7] for the Open-World setting has also
been studied [23]. For 3D LiDAR object detection, prior
methods include OSIS [61] and open-set 3d-net [9]; how-
ever, they do not study a completely unsupervised setting.

3. Method: OYSTER

Our method has two phases of training: the initial boot-
strapping phase, and the self-improvement phase.

The initial bootstrapping phase takes advantage of the
fact that point clouds in the near range tend to be dense
and have clear object clusters, so we can obtain reasonable
near-range bounding box seed pseudo-labels via point clus-
tering. Thanks to the translation equivariance property of
convolutional nets, we find that a CNN detector trained on
near-range labels can generalize to longer-range in a zero-
shot manner with the help of data augmentations such as ray
dropping that randomly sparsify the inputs.

The self-improvement phase utilizes temporal consis-
tency of object tracks as a self-supervision signal. Given
noisy detections across time, we employ an unsupervised
offline tracker to find object tracks of various lengths. We
discard short tracks, and refine long tracks. An object track

should have the same object size across time, so our refine-
ment process uses track-level information to update pseudo-
labels in long tracks. We train a new detector on the up-
dated pseudo-labels, dump its outputs as new pseudo-labels,
track, refine, and repeat. Fig. 2 depicts the overall pipeline.

We describe the two training phases in more detail below.

3.1. Initial Bootstrapping via Point Clustering and
Range Extension

Given a 3-dimensional LiDAR point cloud p ∈ RN×3

we obtain the initial seed pseudo-labels B(0), via ground
removal, point clustering, and bounding box fitting:

B(0) ← FitBboxes(Clustering(RemoveGround(p)))

where we employ the 2D Bird-Eye-View (BEV) detec-
tion representation [35, 65] and each BEV bounding box
b = (x, y, l, w, θ) ∈ B(0) consists of the centroid position
(x, y), the length and width (l, w), and the heading θ. We
perform this for each frame in the dataset D to obtain the
full set of pseudo-labels B(0). This process follows a classi-
cal pipeline prior to the deep-learning era [13,26]. We make
simple choices for each module: for ground removal, we fit
a linear ground plane similar to [66] and remove the esti-
mated ground points before clustering; for clustering, we
use DBSCAN [17]; for bounding box fitting of each point
cluster, we use an off-the-shelf algorithm [69]. While much
more sophisticated choices exist, those noisy initial labels
are already good enough to kickstart our learning process.

In the near range (typically within 40m for a LiDAR
with 64 beams), objects usually have clear point clusters
(see Fig. 1), so the clustering labels suffice the bootstrap-
ping purpose. However, in the long range, each object has
much fewer points, making clustering results unreliable, so
we should rely on neural net’s ability to generalize even for
initial label generation. Consequently, our goal is to train
a detector on near-range only, such that it can zero-shot
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Figure 3. Label Refinement Illustration. With unsupervised tracking, we fill in missed detections and obtain per-object tracklets. For
long tracklets, we leverage temporal observations to find a new, consistent object size and update the initial labels (in purple) with a corner-
based alignment strategy [64]. We additionally filter out short tracklet labels, which will not be used in the next round of self-training.

generlize to longer range at test time. We utilize equiv-
ariance of convolutional nets to achieve this goal. Follow-
ing [35, 65], we train a single-stage CNN detector on near-
range only, where the inputs to the CNN are the voxelized
point clouds. The voxelizer produces a binary voxel occu-
pancy map I ∈ {0, 1}L×W×D, where L ×W defines the
input BEV grid resolution, andD is the number of channels
in the height dimension. We use a ResNet [25] backbone
with FPN [37] to produce 4x downsampled feature map,
from which a simple convolutional header decodes the box
parameters (x, y, l, w, θ) and the confidence c in a dense
fashion (i.e., per BEV pixel). After this, the set of object
detections is obtained by applying confidence thresholding
and non-maximum suppression (NMS). During training, the
inputs to the backbone are near-range LiDAR BEV images
of resolution L ×W × D; during label generation (i.e., at
inference), the inputs are longer-range with size L̃×W̃×D,
where L̃ > L and W̃ > W .

Considering the difference in point density between
near-range and long-range, we also propose to randomly
drop rays during training, such that the convolutional ker-
nels perform better on sparse regions, which is useful for the
zero-shot generalization to long-range. This ray-dropping
data augmentation is implemented by first randomly drop-
ping LiDAR beams, and then randomly dropping points
within evenly spaced rows and columns under a range-view
image in spherical coordinates. This process aims to mimic
how LiDAR beams tend to be more spaced out as range in-
creases. We find that ray dropping helps CNNs generalize to
longer range significantly better when only trained on near
range, whose results outperform those from CNNs directly
trained on full-range clustering labels.

CNN(0) ← Train
({

RayDrop(pi)
}
i∈D

,B(0) | near-range
)

B(1) ←
{

NMS
(

CNN(0)(Voxelize(pi)) | full-range
)}

i∈D

The detection outputs above a certain confidence threshold
will become our first iteration of self-training pseudo-labels
B(1), which are already able to discover many missed de-
tections and remove false positives from initial point clus-
ters B(0). This self-correction phenomenon is also observed

in [66], and is a result of the model’s limited capacity to
overfit to the inconsistent noises in the pseudo-labels.

3.2. Track, Refine, Retrain, and Repeat: Teaching
Unsupervised Detectors to Self-Improve

Albeit better than the initial labels B(0), the labels B(1)
after the initial training and range extension are far from
perfect and require further refinement. We propose a frame-
work Track, Refine, Retrain, and Repeat to teach unsuper-
vised detectors to self-improve. Our framework consists of
the following steps: run unsupervised tracking, refine the
long tracks, discard the short tracks, re-train the detector on
refined pseudo-labels, and repeat the process with thresh-
olded detector outputs as the next round of pseudo-labels.
The method uses temporal consistency as self-supervision
to improve its own pseudo-labels and detection results. We
will first describe our unsupervised tracker, and then discuss
how we leverage the temporal information stored in tracklet
states to refine and iterate.

Unsupervised Tracking: We follow the tracking-by-
detection paradigm, where object detections are first ob-
tained independently for each frame in a temporal sequence,
and then discrete association between two consecutive time
steps is performed iteratively to form the tracks. To do so,
we employ a simple parametric online tracker. At each time
step t in a sequence of frames, each object j has a tracklet
sjt that stores the estimated state trajectories St = {sjt =
(b, vx, vy, c)

j
t , n

j
t} where b corresponds to the previously

introduced box parameters, (vx, vy) is the 2D velocity, nt
is the length of tracklet so far, and c is the confidence score
of the tracklet. Given pseudo-labels B(k) from self-training
iteration k, we first forecast the new states of each tracklet
and then match detections to predictions:

Mt ← Match(B
(k)
t ,Forecast(St−1))

We adopt the simplest strategy for forecasting and match-
ing: forecasting assumes constant velocity between frames,
and matching is greedy based on bounding box centroid
distances. For a pseudo-label matched to tracklet j with
tracklet length njt so far, we set mt = njt , where mt de-
notes the temporal consistency score of the pseudo-label;
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if a pseudo-label is unmatched, we set mt = 0. Mean-
while, the online tracker computes its current state St based
on St−1 and Mt, which involves adding detections to their
matched tracklets, growing unmatched tracklets (to handle
occlusions and flickering detections), initializing new track-
lets for unmatched detections, deleting tracklets that have
been unmatched for too long, and incrementing each track-
let’s length njt . Finally, we simply run this tracker in both
temporal directions, obtaining bi-directional tracklets

−→
S t

and
←−
S t. Note that each pseudo-label has also stored bi-

directional temporal consistency scores −→mj
t and ←−mj

t , and
we aggregate them with m̃(k)

t = max(−→m(k)
t ,←−m(k)

t ).

Pseudo-Label Refinement: Based on the temporal con-
sistency scores m̃(k)

t , we divide pseudo-labels into short vs.
long tracklets by a threshold q. For the short tracklets with
m̃

(k)
t < q, we ignore them in the next round of re-training.

For the long tracklets with m̃(k)
t ≥ q, we refine them in a

simple process. Due to the tightest-box-fitting nature of the
seed clustering labels, the bbox sizes in B(k) are smaller for
partially observed objects, especially for those farther away
from the ego-vehicle. To address this, for each actor trajec-
tory, we set the new length and width of the actor as the top
r percentile of all lengths and all widths detected through-
out the tracklet. Next, following the corner-based alignment
strategy from [64], we find the bbox corner that is the clos-
est to the ego-vehicle, with the intuition that this corner is
the most observed and likely to be the most reliable. We
then update the bbox center with the anchored corner, the
original bbox heading and the new bbox size. Fig. 3 illus-
trates the refinement process.

Iterative Self-Training: Following the refinement pro-
cess, we obtain the refined pseudo-labels B̃(k)

t and use them
to guide the next round of training:

B̃
(k)
t =

{
Refine(

−→
S )

(k)
t m̃

(k)
t ≥ q

∅ otherwise

CNN(k) ← Train
({

RayDrop(pi)
}
i∈D

, B̃(k) | full-range
)

B(k+1) ←
{

NMS
(

CNN(k)(Voxelize(pi)) | full-range
)}

i∈D

where ∅ indicates that training loss is not applied at the lo-
cation of this pseudo-object during detector re-training, i.e.,
we only re-train on pseudo-labels that are temporally con-
sistent and refined. With the re-trained detector, we derive
the new generation of pseudo-labels B(k+1), which can be
further refined and used for re-training.

In summary, our Track, Refine, Retrain, and Repeat
framework constructs an object discovery loop where the
detector is iteratively re-trained on pseudo-labels of increas-
ingly higher quality as self-training goes on.

4. Experimental Evaluation
In this section, we first outline the datasets and metrics

we use, including a newly proposed detection metric based
on distance-to-collision. Next, we show that our method
outperforms state-of-the-art unsupervised detection meth-
ods. Finally, we present quantitative and qualitative insights
into our contributions with a thorough ablation study of dif-
ferent components.

Datasets and Experiment Setting: We use Pandaset [63]
and Argoverse 2 Sensor [60] (AV2 for short) to evaluate our
method on two different sensor suites. Pandaset consists
of 103 snippets of 8 seconds each, recorded in dense urban
traffic in San Francisco as well as the El Camino Real high-
way. For our experiments, we use the spinning Pandar64 Li-
DAR. It features 28 different annotation classes, which we
group into 3 main categories: vehicles, cyclists and pedes-
trians. No annotations are used during training; at test time,
we conduct class-agnostic evaluation on three main classes
combined, since our goal is to train an unsupervised object
detector that detects any object. We split the dataset into
73 training and 30 validation snippets. Both splits evenly
distribute across both San Francisco and El Camino Real.
The AV2 dataset is collected in six distinct cities in the U.S.
cities with diverse weather (from snowy to sunny). It con-
sists of 850 snippets, each 15 seconds long. The LiDAR
data comes from two 32-beam lidars, spinning at 10 Hz in
the same direction, but separated in orientation by 180◦. We
use the official train and validation split with 700 and 150
snippets respectively. For our detection models, we focus
on the front-range setting with a region of interest (ROI) of
[0, 80] meters longitudinally and [−40, 40] meters laterally
with respect to the traveling direction of the ego vehicle.
The selected ROI allows us to evaluate both near-range and
long-range detections.

Implementation Details: For label refinement, we use
track length q = 6 for both Pandaset and AV2. To update
bounding box sizes in long tracklets, we use r = 100% for
Pandaset and r = 95% for AV2. For Pandaset we run three
rounds of self-training, with long tracklet refinement only
applied in the last training round. For AV2 we employ two
rounds of self-training, with long tracklet refinement in ev-
ery training round. More details of the detection model, the
tracker, and training are included in the supplementary.

Metrics: Our metrics focus on the goal of evaluating a
class-agnostic object detector that is capable of detecting
any object. Given this safety-critical objective, it is imper-
ative for the detection results to not only have high IoU
(intersection-over-union) with the ground truths, but also
accurately measure how far the detected objects are from
the self-driving vehicle. After combining annotations from
all classes (vehicle, pedestrian, and cyclist), we propose the
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AP @ IoU Recall @ IoU AP @ ∆DTC (m) Recall @ ∆DTC (m)

0.3 0.5 0.7 0.3 0.5 0.7 1.5 1.0 0.5 1.5 1.0 0.5

DBSCAN [17] 3.5 1.1 0.3 28.6 15.9 8.3 10.9 9.9 8.0 50.9 48.3 43.1
DBSCAN + init-train 21.6 12.0 6.4 42.0 26.0 13.8 41.3 39.3 34.2 71.8 69.4 62.1
DBSCAN + self-train [66] 20.1 12.3 6.3 42.2 26.1 13.5 39.2 37.4 30.1 71.8 69.4 61.4
PP score [66] 6.4 2.0 0.4 32.8 18.7 8.8 14.0 12.2 9.2 48.5 45.0 38.9
PP score + init-train [66] 28.4 14.0 4.9 47.4 26.6 12.5 42.2 38.9 31.7 69.5 66.0 57.5
MODEST [66] (1 traversal) 22.8 7.5 2.8 49.7 28.9 14.9 38.8 36.4 30.2 70.2 66.9 59.0
Ours 43.5 29.5 18.1 62.8 44.8 28.1 51.8 48.8 41.1 75.7 72.3 63.7

Table 1. [Pandaset] Comparison against state-of-the-art. Evaluated on the range 0-80m on all classes (vehicle, pedestrian, cyclist).

AP @ IoU Recall @ IoU AP @ ∆DTC (m) Recall @ ∆DTC (m)

0.3 0.5 0.7 0.3 0.5 0.7 1.5 1.0 0.5 1.5 1.0 0.5

DBSCAN [17] 2.1 1.0 0.4 26.4 17.9 10.9 6.8 6.4 5.4 47.2 45.7 41.9
DBSCAN + init-train 15.5 10.7 5.7 29.7 19.3 10.1 27.6 26.6 23.3 58.0 56.6 51.7
DBSCAN + self-train [66] 12.5 9.1 5.5 30.1 19.6 10.3 23.9 23.1 20.4 58.4 57.0 52.2
PP score [66] 5.5 2.5 0.9 33.7 22.8 13.8 11.6 10.4 8.4 49.1 46.5 41.6
PP score + init-train [66] 24.4 15.8 7.4 43.9 27.4 14.2 38.9 36.8 31.2 71.5 68.0 59.5
MODEST [66] (1 traversal) 20.6 9.9 2.7 47.0 28.6 13.0 38.6 35.9 28.1 74.0 70.4 61.0
Ours 35.4 24.5 12.9 55.1 37.5 21.4 46.4 43.9 38.1 74.5 71.0 63.1

Table 2. [AV2] Comparison against state-of-the-art. Evaluated on the range 0-80m on all classes (vehicle, pedestrian, cyclist). DBSCAN
+ self-train, MODEST and ours all employ two additional rounds of self-training after the initial training.

Ego vehicle

Unmatched GT 
despite smaller 
𝚫DTC (IoU=0)

Closest point to ego in detection
Closest point to ego in GT
DTC to detection
DTC to GT

GT
Detection

𝚫DTC = abs ( ||        || - ||       || )

Figure 4. Our novel matching criteria for detection metrics
based on distance-to-collision (DTC). It prioritizes detecting the
closest corner to the SDV correctly, as opposed to the full extent.

following evaluation steps to give a full picture about the
performance of different methods:

• Measure Average Precision (AP) and Recall. AP is a
more complete metric, measuring the area under the
Precision Recall curve. However, we may identify
properly detected objects as false positives due to the
absence of annotations for objects in that class. On the
other hand, Recall does not penalize false positive de-
tections, making it more suitable for our experimental
setting. Since arbitrarily large Recall can be achieved
by producing a very large and diverse set of object de-
tections, we evaluate all methods limiting the budget
of detections to the 100 most confident ones.

• Compute these metrics for two different matching cri-
teria, one based on the standard intersection over union
(IoU) — which captures how well we predict the size
of the objects, and a novel metric based on the differ-
ence in distance-to-collision (∆DTC) — which mea-
sures how well we can predict how close objects are to
the ego vehicle. Fig. 4 shows our proposed matching
criteria based on ∆DTC. For a match between a pair of
detection and ground-truth bounding boxes, we require
that the two are under a certain ∆DTC threshold (in
meters). Subject to this constraint, we perform IoU-
based greedy matching to prevent associating detec-
tions with ground-truth bounding boxes corresponding
to nearby actors (e.g., the dotted bounding box in the
adjacent lane), as those may have a corner that is closer
to the detection, but have no overlap.

Note that we only consider class-agnostic metrics rather
than per-class metrics, since our task is to detect any ob-
ject rather than predict their classes. As a result, naively
computing per-class AP will incorrectly penalize true de-
tections for other classes as false positives. Per-class Recall
will be artificially low for rarer classes, since constraining
the number of detections is often necessary for recall cal-
culation (otherwise 100% recall is achieved by outputting
detections everywhere), and highly represented classes in
the data (e.g., vehicles) tend to overwhelm the rest of the
classes within a fixed number of detections.
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Figure 5. [Pandaset] Qualitative results: clustering algorithms (DBSCAN and PP-score), state-of-the-art (MODEST) and our method.
We show detections in purple and ground-truth bboxes in orange.

Baselines: Following [66], we compare against the fol-
lowing unsupervised baselines. DBSCAN [17] performs
density-based spatial clustering, grouping points with many
nearby neighbors together. DBSCAN + init-train learns an
object detector with the supervision of DBSCAN labels.
DBSCAN + self-train adds two additional rounds of self-
training after the initial training, where the thresholded de-
tection outputs of the object detector are used as pseudo-
labels for self-training. PP score [66] estimates the persis-
tence of a point by measuring the variance in the number
of LiDAR points within the point’s neighborhood encoun-
tered in other observations of the same region. These PP-
scores can then be used as a feature for clustering, retriev-
ing mobile objects that have a low PP-score. Note that in
the original paper multiple traversals over the same area are
assumed, which pose a very strict requirement on data col-
lection. To avoid imposing this strict requirement, we only
consider a single traversal with multiple observations over
a short period of time (i.e., the length of the snippet). PP
score + init-train trains a detector on the persistence-based
clustering labels with one iteration of training. Finally,
MODEST (1 traversal) adds two rounds of self-training af-
ter the initial training, where at each round the pseudo-
labels coming from the latest self-trained model are filtered
using PP scores to discard persistent clusters.

Benchmark against state-of-the-art: Tabs. 1 and 2 show
a comparison with state-of-the-art unsupervised methods in
Pandaset and Argoverse V2 Sensor datasets, respectively.
The raw DBSCAN and PP score labels perform poorly
since confidence scores are not output by these methods for
ranking during metrics computation. Training with point
clustering pseudo-labels improves the metrics for both DB-
SCAN and PP score. However, additional rounds of self-
training lowered the AP for both IoU and DTC metrics.
The results imply that MODEST (1 traversal) relies very

heavily on multiple traversals over the same region. Our
method OYSTER outperforms previous methods by a large
margin across all IoU and distance thresholds, both for av-
erage precision and recall. Fig. 5 shows that our method
can overcome failure modes exhibited by the baselines such
as false negative detections for static objects, high density
of false negatives at long-range, and some localization and
size estimation errors.

Effect of the initial training range and ray-dropping:
Since point clustering labels tend to be more reliable in
the near range due to high point density, we find it bene-
ficial to train on near-range LiDAR images with near-range
clustering labels at first, and then rely on the translation-
invariance property of ConvNets to generalize zero-shot to
longer range. This is empirically demonstrated by the im-
provement from M1 → M2 in Tab. 3, where the zero-shot
generalization from short-range (0-40m) to full-range (0-
80m) (M2) performs much better than directly training on
full-range (M1). We also find that random ray dropping
as a data augmentation technique during the initial train-
ing (M2 → M3) can help the ConvNet generalize better to
longer range in terms of detecting more objects, although
it seems to slightly sacrifice localization accuracy as shown
by the metrics evaluated at high IoU values, likely because
ray dropping encourages the detector to focus more on one
side of objects with the most points facing the ego vehicle
rather than the overall object shapes.

Effect of short tracklet filtering: Using unsupervised
tracking to ignore temporally inconsistent point clustering
pseudo-labels is important. This makes the pseudo-labels
less noisy, providing better supervision to the model. Train-
ing with these filtered set of labels is beneficial, as shown
by the improvement from M3 →M4 in Tab. 3.
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AP @ IoU Recall @ IoU AP @ ∆DTC Recall @ ∆DTC

ID ITR RD SRef ST2 LRef 0.3 0.5 0.7 0.3 0.5 0.7 1.5 1.0 0.5 1.5 1.0 0.5

M1 80 21.6 12.0 6.4 42.0 26.0 13.8 41.3 39.3 34.2 71.8 69.4 62.1
M2 40 23.2 13.0 5.3 42.9 25.7 12.8 41.8 39.5 33.9 72.0 69.5 62.1
M3 40 X 26.6 14.5 4.1 44.6 24.5 10.0 46.1 43.4 36.5 72.0 69.0 60.8
M4 40 X X 32.3 17.8 7.5 51.6 31.9 15.4 48.7 46.1 40.3 74.1 71.4 64.6
M5 40 X X X 43.5 26.2 13.2 58.6 38.4 20.6 55.2 52.3 45.2 77.1 73.9 65.7
M6 40 X X X X 43.5 29.5 18.1 62.8 44.8 28.1 51.8 48.8 41.1 75.7 72.3 63.7

Table 3. [Pandaset] Ablation study. All class evaluation in the range 0-80m. Legend: ID=Model identifier, ITR=Initial training range
(first iteration) from 0 to X meters, RD=Ray-dropping, SRef=Tracking & short tracklet filtering, ST2=2 rounds of additional self-training,
LRef=Long tracklet refinement.

Figure 6. [Pandaset] Evolution of self-training labels: with initial training and more rounds of self-training, we are able to remove false
positives, discover missed detections, and improve bbox accuracy. We show detections in purple and ground-truth bboxes in orange.

Effect of self-training loop and long tracklet refinement:
Fig. 6 visually shows the evolution of the detections through
self-training (loop shown in Fig. 2). Initially, point clus-
tering labels are quite noisy, identifying many background
regions as objects. After the first training iteration, the
model can clearly distinguish foreground from background
(i.e., removes false positives), and discovers other vehicles
missed by clustering. Further rounds of self-training dis-
cover additional objects such as vehicles and cyclists, and
increases the object localization accuracy. Quantitatively,
the effect of 3 rounds of self-training is shown in Tab. 3,
where we can see M5 and M6 clearly outperform the other
ablations. The difference betweenM5 andM6 is that inM5

we skip the long tracklet CornerAlign refinement stage, go-
ing directly from tracking and short tracklet filtering to re-
training. In M6 we refine the long tracklets in the pseudo-
labels provided by M5, and add one more round of self-
training with the refined pseudo-labels. We can see that the
refinement stage is able to further improve the IoU metrics.
Note that the DTC metrics dropped with long tracklet re-
finement, most likely because increasing the bounding box
size with inaccurate heading negatively impacts the accu-

racy of the closest distance to the ego-vehicle. This show-
cases the importance of having both IoU and DTC metrics,
as they focus on different aspects of detection accuracy.

5. Conclusion
We have proposed a novel method, OYSTER, for unsu-

pervised object detection from LiDAR point clouds. Us-
ing weak object priors (near-range point clustering) as a
bootstrapping step, our method can train an object detec-
tor with no human annotations, by first utilizing the transla-
tion equivariance of CNNs to generate long-range pseudo-
labels, and then deriving self-supervision signals from the
temporal consistency of object tracks. Our proposed self-
training loop is highly effective for teaching an unsuper-
vised detector to self-improve. We validate our results on
two real-world datasets, Pandaset and Argoverse 2 Sensor,
where our model outperforms prior unsupervised methods
by a significant margin. Making self-supervised learning
work on real-world robot perception is an exciting challenge
for AI, and our work takes a step towards allowing robots to
make sense of the visual world without human supervision.
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Bianchi, and Roman Garnett, editors, Advances in Neu-
ral Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS

2018, December 3-8, 2018, Montréal, Canada, pages 8615–
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