
Published as a conference paper at ICLR 2023

SCALING FORWARD GRADIENT WITH LOCAL LOSSES

Mengye Ren1∗, Simon Kornblith2, Renjie Liao3, Geoffrey Hinton2,4

1NYU, 2Google, 3UBC, 4Vector Institute

ABSTRACT

Forward gradient learning computes a noisy directional gradient and is a biologi-
cally plausible alternative to backprop for learning deep neural networks. However,
the standard forward gradient algorithm, when applied naively, suffers from high
variance when the number of parameters to be learned is large. In this paper, we
propose a series of architectural and algorithmic modifications that together make
forward gradient learning practical for standard deep learning benchmark tasks. We
show that it is possible to substantially reduce the variance of the forward gradient
estimator by applying perturbations to activations rather than weights. We further
improve the scalability of forward gradient by introducing a large number of local
greedy loss functions, each of which involves only a small number of learnable pa-
rameters, and a new MLPMixer-inspired architecture, LocalMixer, that is more suit-
able for local learning. Our approach matches backprop on MNIST and CIFAR-10
and significantly outperforms previously proposed backprop-free algorithms on Im-
ageNet. Code is released at https://github.com/google-research/
google-research/tree/master/local_forward_gradient.

1 INTRODUCTION

Most deep neural networks today are trained using the backpropagation algorithm (a.k.a. back-
prop) (Werbos, 1974; LeCun, 1985; Rumelhart et al., 1986), which efficiently computes the gradients
of the weight parameters by propagating the error signal backwards from the loss function to each
layer. Although artificial neural networks were originally inspired by biological neurons, backprop
has always been considered as “biologically implausible” as the brain does not form symmetric
backward connections or perform synchronized computations. From an engineering perspective,
backprop is incompatible with a massive level of model parallelism, and restricts potential hardware
designs. These concerns call for a drastically different learning algorithm for deep networks.

In the past, there have been attempts to address the above weight transport problem by introducing
random backward weights (Lillicrap et al., 2016; Nøkland, 2016), but they have been found to scale
poorly on larger datasets such as ImageNet (Bartunov et al., 2018). Addressing the issue of global
synchronization, several papers showed that greedy local loss functions can be almost as good as
end-to-end learning (Belilovsky et al., 2019; Löwe et al., 2019; Xiong et al., 2020). However, they
still rely on backprop for learning a number of internal layers within each local module.

Approaches based on weight perturbation, on the other hand, directly send the loss signal back to the
weight connections and hence do not require any backward weights. In the forward pass, the network
adds a slight perturbation to the synaptic connections and the weight update is then multiplied by the
negative change in the loss. Weight perturbation was previously proposed as a biologically plausible
alternative to backprop (Xie & Seung, 1999; Seung, 2003; Fiete & Seung, 2006). Instead of directly
perturbing the weights, it is also possible to use forward-mode automatic differentiation (AD) to
compute a directional gradient of the final loss along the perturbation direction (Pearlmutter, 1994).
Algorithms based on forward-mode AD have recently received renewed interest in the context of
deep learning (Baydin et al., 2022; Silver et al., 2022). However, existing approaches suffer from the
curse of dimensionality, and the variance of the estimated gradients is too high to effectively train
large networks.

In this paper, we revisit activity perturbation (Le Cun et al., 1988; Widrow & Lehr, 1990; Fiete
& Seung, 2006) as an alternative to weight perturbation. As previous works focused on specific
settings, we explore the general applicability to large networks trained on challenging vision tasks.

∗Work done as a visiting faculty researcher at Google. Correspondence to: mengye@cs.nyu.edu.

1

https://github.com/google-research/google-research/tree/master/local_forward_gradient
https://github.com/google-research/google-research/tree/master/local_forward_gradient

Published as a conference paper at ICLR 2023

We prove that activity perturbation yields lower-variance gradient estimates than weight perturbation,
and provide a continuous-time rate-based interpretation of our algorithm. We directly address the
scalability issue of forward gradient learning by designing an architecture with many local greedy
loss functions, isolating the network into local modules and hence reducing the number of learnable
parameters per loss. Unlike prior work that only adds local losses along the depth dimension, we
found that having patch-wise and channel group-wise losses is also critical. Lastly, inspired by the
design of MLPMixer (Tolstikhin et al., 2021), we designed a network called LocalMixer, featuring a
linear token mixing layer and grouped channels for better compatibility with local learning.

We evaluate our local greedy forward gradient algorithm on supervised and self-supervised image
classification problems. On MNIST and CIFAR-10, our learning algorithm performs comparably
with backprop, and on ImageNet, it performs significantly better than other biologically plausible
alternatives using asymmetric forward and backward weights. Although we have not fully matched
backprop on larger-scale problems, we believe that local loss design could be a critical ingredient for
biologically plausible learning algorithms and the next generation of model-parallel computation.

2 RELATED WORK

Ever since the perceptron era, the design of learning algorithms for neural networks, especially algo-
rithms that could be realized by biological brains, has been a central interest. Review papers by Whit-
tington & Bogacz (2019) and Lillicrap et al. (2020) have systematically summarized the progress
of biologically plausible deep learning. Here, we discuss related work in the following subtopics.

Forward gradient and reinforcement learning. Our work leverages forward-mode automatic
differentiation (AD), which was first proposed by Wengert (1964). Later it was used to learn recurrent
neural networks (Williams & Zipser, 1989) and to compute Hessian vector products (Pearlmutter,
1994). Computing the true gradient using forward-mode AD requires the full Jacobian, which is often
large and expensive to compute. Recently, Baydin et al. (2022) and Silver et al. (2022) proposed
to update the weights based on the directional gradient along a random or learned perturbation
direction. They found that this approach is sufficient for small-scale problems. This general family
of algorithms is also related to reinforcement learning (RL) and evolution strategies (ES), since in
each case the network receives a global reward. RL and ES have a long history of application in
neural networks (Whitley, 1993; Stanley & Miikkulainen, 2002; Salimans et al., 2017), and they
are effective for certain continuous control and decision-making tasks. Clark et al. (2021) found
global credit assignment can also work well in vector neural networks where weights are only present
between vectorized groups of neurons.

Greedy local learning. There have been numerous attempts to use local greedy learning objectives
for training deep neural networks. Greedy layerwise pretraining (Bengio et al., 2006; Hinton et al.,
2006; Vincent et al., 2010) trains individual layers or modules one at a time to greedily optimize
an objective. Local losses are typically applied to different layers or residual stages, using common
supervised and self-supervised loss formulations (Belilovsky et al., 2019; Nøkland & Eidnes, 2019;
Löwe et al., 2019; Belilovsky et al., 2020). Xiong et al. (2020); Gomez et al. (2020) proposed to
use overlapped losses to reduce the impact of greedy learning. Patel et al. (2022) proposed to split a
network into neuron groups. Laskin et al. (2020) applied greedy local learning on model parallelism
training, and Wang et al. (2021) proposed to add a local reconstruction loss for preserving information.
However, most local learning approaches proposed in the last decade rely on backprop to compute
the weight updates within a local module. One exception is the work of Nøkland & Eidnes (2019),
which avoided backprop by using layerwise objectives coupled with a similarity loss or a feedback
alignment mechanism. Gated linear networks and their variants (Veness et al., 2017; 2021; Sezener
et al., 2021) ask every neuron to make a prediction, and have shown interesting results on avoiding
catastrophic forgetting. From a theoretical perspective, Baldi & Sadowski (2016) provided insights
and proofs on why local learning can be worse than global learning.

Asymmetric feedback weights. Backprop relies on weight symmetry: the backward weights are the
same as the forward weights. Past research has looked at whether this constraint is necessary. Lillicrap
et al. (2016) proposed feedback alignment (FA) that uses random and fixed backward weights and
found it can support error driven learning in neural networks. Direct FA (Nøkland, 2016) uses a
single backward layer to wire the loss function back to each layer. There have also been methods that
aim to explicitly update backward weights. Recirculation (Hinton & McClelland, 1987) and target
propagation (TP) (Bengio, 2014; Lee et al., 2015; Bartunov et al., 2018) use local reconstruction

2

Published as a conference paper at ICLR 2023

objective to learn separate forward and backward weights as approximate inverses of each other.
Ladder networks (Rasmus et al., 2015) found local reconstruction objectives and asymmetric weights
can help achieve strong semi-supervised learning performance. However, Bartunov et al. (2018)
reported both FA and TP algorithms do not scale to larger problems such as ImageNet, where their
error rates are over 90%. Liao et al. (2016); Xiao et al. (2019) proposed sign symmetry (SS) where
each backward connection weight share the same sign as the forward counterpart. Akrout et al. (2019)
proposed weight mirroring and the modified Kolen-Pollack algorithm (Kolen & Pollack, 1994) to
align forward and backward weights. Woo et al. (2021) proposed to update using activities from
several layers below to avoid bidirectional connections. Compared to these works, we circumvent
the issue of weight symmetry, and more generally network symmetry, by using only reward (and the
change rate thereof), instead of backward weights.

Biologically plausible perturbation learning. Forward gradient is related to perturbation learning
in the biology context. Traditionally, neural plasticity learning rules focus on deriving weight updates
as a function of the input and output activity of a neuron (Hebb, 1949; Widrow & Hoff, 1960; Oja,
1982; Bienenstock et al., 1982; Abbott & Nelson, 2000). Weight perturbation learning (Jabri & Flower,
1992), on the other hand, is much more general as it permits any form of global reward (Schultz
et al., 1997). It was developed in both rated-based and spiking-based formuations (Xie & Seung,
1999; Seung, 2003). Activity (or node) perturbation was proposed in shallow networks (Le Cun
et al., 1988; Widrow & Lehr, 1990) and later in a spike-based continuous time network (Fiete &
Seung, 2006), where it was interpreted as the perturbation of the conductance of neurons. Werfel
et al. (2003) showed that backprop has a faster convergence rate than perturbation learning, and
activity perturbation wins over weight perturbation by another factor. In our work, we show activity
perturbation has lower gradient estimation variance compared to weight perturbation.

3 FORWARD GRADIENT LEARNING

In this section, we review and establish the technical background for our learning algorithm. We first
review the technique of forward-mode automatic differentiation (AD). Second, we formulate two
different types of perturbation in the weight space or activity space.

3.1 FORWARD-MODE AUTOMATIC DIFFERENTIATION (AD)

Let f : Rm 7→ Rn. The Jacobian of f , Jf , is a matrix of size n×m. Forward-mode AD computes
the matrix-vector product Jfv, where v ∈ Rm. It is defined as the directional gradient along v
evaluated at x:

Jfv := lim
δ 7→0

f(x+ δv)− f(x)
δ

. (1)

For comparison, backprop, also known as reverse-mode AD, computes the vector-Jacobian product
vJf , where v ∈ Rn, which corresponds to the last term in the chain rule. In contrast to reverse-mode
AD, forward-mode AD only requires one forward pass, which is augmented with the derivative
information. To compute the Jacobian vector product of a node in a computation graph, first the
input node will be augmented with v, which is the vector to be multiplied. Then for other nodes, we
send in a tuple of (x,x′) as inputs and compute a tuple (y,y′) as outputs, where x′ and y′ are the
intermediate derivatives at node x and node y, i.e. y′ = dy

dxx
′, and dy

dx is the Jacobian between y and
x. In the JAX library (Bradbury et al., 2018), forward-mode AD is implemented as jax.jvp.

3.2 WEIGHT-PERTURBED FORWARD GRADIENT

Weight perturbation to generate weight updates was originally explored in (Barto et al., 1983; Xie
& Seung, 1999; Seung, 2003). Baydin et al. (2022) uses the technique of forward-mode AD to
implement weight perturbation, which is better than finite differences in terms of numerical stability.
Let wij be the weight connection between unit i and j, and f be the loss function. We can estimate
the gradient by sampling a random matrix with iid elements vij drawn from a zero-mean unit-variance
Gaussian distribution. The estimator is

gw(wij) =
(∑

i′j′ ∇wi′j′vi′j′
)
vij . (2)

Intuitively, this estimator samples a random perturbation direction vij and tests how it aligns with
the true gradient ∇wi′j′ by using forward-mode to perform the dot product, and then multiplies the
scalar alignment with the perturbation direction again. Baydin et al. (2022) referred this form of
gradient estimation using forward-mode AD as “forward gradient”. To distinguish with another form

3

Published as a conference paper at ICLR 2023

Unbiased? Avg. Variance (shared) Avg. Variance (independent)

gw(·) Yes pq+2
N

V + (pq + 1)S pq+2
N

V + pq+1
N

S
ga(·) Yes q+2

N
V + (q + 1)S q+2

N
V + q+1

N
S

Table 1: Comparing weight (gw) and activity (ga) perturbation. V =dimension-wise avg. gradient
variance, S=dimension-wise avg. squared gradient norm; p=fan-in; q=fan-out; N=batch size.

of perturbation we detail later, we refer this to as “weight-perturbed forward gradient”, or simply as
“weight perturbation”.

3.3 ACTIVITY-PERTURBED FORWARD GRADIENT

An alternative to perturbing the weights is to instead perturb the activities, which can reduce the num-
ber of perturbation dimensions per example. Activity perturbation was originally explored in Le Cun
et al. (1988); Widrow & Lehr (1990) under restrictive assumptions. Here, we introduce a general way
to estimate gradients using activity perturbation. It is potentially biologically plausible, since it could
correspond to perturbation of the conductance in each neuron (Fiete & Seung, 2006). Here, we focus
on a discrete-time rate-based formulation for simplicity. Let xi denote the activity of the i-th pre-
synaptic neuron and zj denote that of the j-th post-synaptic neuron before the non-linear activation
function, and uj be the perturbation of zj . The activity-perturbed forward gradient estimator is

ga(wij) = xi

(∑
j′ ∇zj′uj′

)
uj , (3)

where the inner product between∇z and u is again computed by using forward-mode AD.

3.4 THEORETICAL PROPERTIES

In this section we aim to analyze the expectation and variance properties of forward gradient
estimators. We focus our analysis on the gradient of one weight matrix {wij}, but the conclusion
holds for a network with many weight matrices too.

Table 1 summarizes the theoretical results1. With a batch size of N , independent perturbation
can achieve 1/N reduction of variance, whereas shared perturbation has a constant variance term
dominated by the squared gradient norm. However, when performing independent weight perturbation,
matrix multiplications cannot be batched because each example’s activation vector is multiplied
with a different weight matrix. By contrast, independent activity perturbation admits batched matrix
multiplications. Moreover, activity perturbation enjoys a factor of fan-in (p) times smaller variance
compared to weight perturbation since the number of perturbed elements is the number of output
units instead of the size of the whole weight matrix. The only drawback of activity perturbation is the
memory required for storage of intermediate activations, in exchange for a factor of Np reduction
in variance. However, for both activity and weight perturbation, the variance still grows with larger
networks. In Section 4 we will further reduce the variance by introducing local loss functions.

3.5 CONTINUOUS-TIME RATE-BASED MODELS

Forward-mode AD can be viewed as computing the first-order time derivative in a continuous-time
physical system. Suppose the tuples passed between nodes of the computation graph are (x, ẋ),
where ẋ is the change in x over time. The computation is then the same as forward-mode AD. For
each node, ẏ = dy

dx ẋ, where dy
dx is the Jacobian between the output and the input. Note that in a

physical system we don’t have to explicitly perform the differentiation operation by running two
forward passes. Instead the first-order derivative information is readily available in the analog signal,
and we only need to plug the output signal into a differentiator circuit.

The activity-perturbed learning rule for a continuous time system is thus ẇij ∝ xiẏj ṙ, where xi
is the pre-synaptic activity, and ẏj is the rate of change in the post-synaptic activity, which is the
perturbation direction for a small period of time, and ṙ is the rate of change of reward (or the negative
loss). The reward controls whether learning is Hebbian or anti-Hebbian. Both Hinton et al. (2007)
and Bengio et al. (2017) propose to use a product of pre-synaptic activity and the rate of change
of postsynaptic activity. However, they did not consider using the rate of change of reward as a
modulator and instead relied on another set of feedback weights to communicate the error signal
through inputs. In contrast, we show that by broadcasting the rate of change of reward, we can
actually bypass the weight transport problem.

1All proofs can be found in Appendix 8 and 9. Numerical simulation results can be found in Appendix 10.

4

Published as a conference paper at ICLR 2023

Channel
Mixing

Token
Mixing

Channel
Mixing + Token

Mixing
Channel
Mixing +… …

Local
Losses

A AA

Local
Losses

Local
Losses

Figure 1: A LocalMixer network consists of several mixer blocks. A=Activation function (ReLU).

…
 …

LN+FC+LN

Channels

Patches

Token Mixing
Ch

an
ne

ls Patches

T

LN+FC+LN+A

T

Channel Mixing

Channel Groups

LN+FC+LN+A

LN+FC+LN+A

…
 …

LN+FC+LN+A

LN+FC+LN+A

…

LN+FC+LN

LN+FC+LN

Reshape

+

LN+FC+LN

LN+FC+LN

LN+FC+LN

Local LossesProject

LN+FC

LN+FC

LN+FC

LN+FC

LN+FC

LN+FC

N x HW x C N x C x HW N x HW x C N x HW x G x C/G N x HW x G

…
 …

A

Figure 2: A LocalMixer residual block with local losses. Token mixing consists of a linear layer and
channels are grouped in the channel mixing layers. Layer norm is applied before and after every linear
layer. LN=Layer Norm; FC=Fully Connected layer; A=Activation function (ReLU); T=Transpose.

3.6 ACTIVATION SPARSITY AND NORMALIZATION FUNCTIONS

In networks with ReLU activations, we can leverage ReLU sparsity to achieve further variance
reduction, because the inactivated units will have zero gradient and therefore we should not perturb
these units, and set the perturbation to be zero.

Normalization layers are often added in deep neural networks after the linear layer. To compute the
correct gradient in activity perturbation, we also need to account for normalization in the weight
update rule. Since there is no backward weight connections, one option is to simply apply backprop
on normalization layers. However, we also found that it is also fine to ignore the gradient of
normalization layer when using layer normalization.

4 SCALING WITH LOCAL LOSSES

As we have explained in the previous section, perturbation learning can suffer from a curse of
dimensionality: the variance grows with the number of perturbation dimensions, and in deep networks
there are often millions of parameters changing at the same time. One way to limit the number of
learnable dimensions is to divide the network into submodules, each with a separate loss function. In
this section, we will explore several ways to increase the number of local losses to tame the variance.

1) Blockwise loss. First, we will divide the network into modules in depth. Each module consists of
several layers. At the end of each module, we compute a loss function, and that loss is used to update
the parameters in that module. This approach is equivalent of adding a “stop gradient” operator in
between modules. Such local greedy losses were previously explored in Belilovsky et al. (2019) and
Löwe et al. (2019).

2) Patchwise loss. Sensory input signals such as images have spatial dimensions. We will apply
a separate loss patchwise along these spatial dimensions. In the Vision Transformer architec-
ture (Vaswani et al., 2017; Dosovitskiy et al., 2021), each spatial token represents a patch in the
image. In modern deep networks, parameters in each spatial location are often shared to improve data
efficiency and reduce memory bandwidth utilization. Although naive weight sharing is not biolog-
ically plausible, we still consider shared weights in this work. It may be possible to mimic the effect
of weight sharing by adding knowledge distillation (Hinton et al., 2015) losses in between patches.

3) Groupwise loss. Lastly, we turn to the channel dimension. To create multiple losses, we split the
channels into a number of groups, and each group is attached to a loss function (Patel et al., 2022).
To prevent groups from communicating between each other, channels are only connected to other
channels within the same group. A grouped linear layer is computed as zg,j =

∑
i wg,i,jxg,i, for

individual group g. Whereas previous work used channel groups to improve computational efficiency
(Krizhevsky et al., 2012; Ioannou et al., 2017; Xie et al., 2017), in our work, adding groups contributes
to the total number of losses and thus reduces variance.

Feature aggregators. Naively applying losses separately to the spatial and channel dimensions leads
to suboptimal performances, since each dimension contains only local information. For losses of

5

Published as a conference paper at ICLR 2023

Gr
ou

ps

Stack + StopGradient

Pa
tc

he
s

AvgPool + StopGradient

Avg
Avg

Avg
Avg

N x HW x G x C/G N x HW x G x C N x HW x HW x G x C N x HW x G x C

B. Replicated

A. Conventional

Patches

Avg

N x CN x HW x C

Figure 3: Feature aggregator designs. A) In the conventional design, average pooling is performed
to aggregate features from different spatial locations. B) We propose the replicated design, features
are first concatenated across groups and then averaged across spatial locations. We create copies of
the same feature with different stop gradient masks so that we obtain more local losses instead of a
global one. The stop gradient mask makes sure that perturbation in one spatial group corresponds to
its loss function. The numerical value of the loss function is the same as the conventional design.

standard tasks such as classification, the model needs a global view of the inputs to make a decision.
Standard architectures obtain this global view by performing global average pooling layer before
the final classification layer. We therefore explore strategies for aggregating information from other
groups and spatial patches before the local loss function.

We would prefer to perform aggregation without reducing the total number of dimensions. We thus
propose a replicated design for feature aggregation, shown in Figure 3. First, channel groups are
copied and communicated to one another, but every group except the active group itself is masked
with stop gradient so that other groups do not affect the forward gradient computation:

xp,g = [StopGrad(xp,1...xp,g−1), xp,g,StopGrad(xp,g+1, ..., xp,G)], (4)
where p and g index the patches and groups respectively. Similarly, each spatial location is also
copied, communicated, and masked, and then averaged locally:

xp,g =
1
P

(
xp,g +

∑
p′ 6=p StopGrad(xp′,g)

)
. (5)

The output of feature aggregation is the same as that of the conventional global average pooling layer.
The difference is that here the loss is replicated and different patch groups are activated in each loss.

Learning objectives. We consider the supervised classification loss and the contrastive InfoNCE
loss (van den Oord et al., 2018; Chen et al., 2020), which are the two most commonly used
losses in image representation learning. For supervised classification, we attach a shared linear
layer (shared across p, g) on top of the aggregated features for a cross entropy loss: Lsp,g =
−
∑
k tk log softmax(Wlxp,g)k. The loss is of the same value across each group and patch location.

For contrastive learning, the linear layer becomes a linear feature projector. Suppose x
(1)
n and

x
(2)
n are the two different views of the n-th example, the InfoNCE loss for contrastive learning is:

Step

Tr
ai

ni
ng

 L
os

s

0

5

10

15

20000 40000 60000 80000

Original Different Perturbation StopGrad

Figure 4: Importance of StopGradi-
ent in the InfoNCE loss, using M/8 on
CIFAR-10 with 256 channels 1 group.

Lcp,g = −
∑
n

log
(Wx(1)

n,p,g)
>StopGrad(Wx(2)

n)∑
m(Wx(1)

n,p,g)
>StopGrad(Wx(2)

m)
.

(6)

Note that we add a stop gradient operator on the second
view. It is usually unnecessary to add this stop gradient
in the InfoNCE loss; however, we found that perturbation-
based methods require a stop gradient and otherwise the
loss will not go down. This is likely because we share the
perturbations on both views, and having the same perturba-
tion will increase the dot product between the two views
but is not desired from a representation learning perspective.
Figure 4 shows a comparison of the loss curves. Non-shared
perturbations also work but are worse than stop gradient.

6

Published as a conference paper at ICLR 2023

Type Blocks Patches Channels Groups Params Dataset

LocalMixer S/1/1 1 1×1 256 1 272K MNIST
LocalMixer M/1/16 1 1×1 512 16 429K MNIST
LocalMixer M/8/16 4 8×8 512 16 919K CIFAR-10
LocalMixer L/8/64 4 8×8 2048 64 13.1M CIFAR-10

LocalMixer L/32/64 4 32×32 2048 64 17.3M ImageNet

Table 2: LocalMixer Architecture Details

5 IMPLEMENTATION

Network architecture. We propose the LocalMixer architecture that is more suitable for local
learning. It takes inspiration from MLPMixer (Tolstikhin et al., 2021), which consists of fully
connected networks and residual blocks. We leverage the fully connected networks so that each
spatial patch performs computations without interfering with other patches, which is more compatible
with our local learning objective. An image is divided into non-overlapping patches (i.e. tokens), and
each block consists of token and channel mixing layers. Figure 1 shows the high level architecture, and
Figure 2 shows the detailed diagram for one residual block. We add a linear projector/classification
layer to attach a loss function at the end of each block. The last layer always uses backprop to update
weights. For token mixing layers, we use one linear fully connected layer instead of an MLP, since we
would like to make each block as shallow as possible. Before the last channel mixing layer, features
are reshaped into a number of groups, and the last layer is fully connected within each feature group.
Table 2 shows architectural details for the different sizes of models we investigate.

Normalization. There are many ways of performing normalization within a neural network across
different tensor dimensions (Krizhevsky et al., 2012; Ioffe & Szegedy, 2015; Ba et al., 2016; Ren et al.,
2017; Wu & He, 2018). We opted for a local variant of layer normalization that normalizes within each
local spatial patch of features (Ren et al., 2017). For grouped linear layers, each group is normalized
separately (Wu & He, 2018). Empirically, we found such local normalization performs better on
contrastive learning experiments and about the same as layer normalization on supervised experiments.
Local normalization is also more biologically plausible as it does not perform global communication.
Conventionally, normalization layers are placed after linear layers. In MLPMixer (Tolstikhin et al.,
2021), layer normalization is placed at the beginning of each residual block. We found it is the best to
place normalization before and after each linear layer, as shown in Figure 2. Empirically this design
choice does not make much difference for backprop, but it allows forward gradient learning to learn
much faster and achieve lower training errors.

Number of Groups

G
P

U
 M

em
or

y
(G

)

0

10

20

30

40

1 2 4 8 16 32

Naïve Fused

Number of Groups

C
om

pu
te

 (s
ec

/e
po

ch
)

0

50

100

150

200
1 2 4 8 16 32

Naïve Fused

Figure 5: Memory and compute usage of
naïve and fused implementation of replicated
losses.

Efficient implementation of replicated losses.
Due to the design of feature aggregation and repli-
cated losses, a naïve implementation of groups can be
very inefficient in terms of both memory consumption
and compute. However, each spatial group actually
computes the same aggregated feature and loss func-
tion. This means that it is possible to share most of
the computation across loss functions when perform-
ing both backprop and forward gradient. We imple-
mented our custom JAX JVP/VJP functions (Brad-
bury et al., 2018) and observed significant memory
savings and compute speed-ups for replicated losses,
which would otherwise not be feasible to run on mod-
ern hardware. The results are reported in Figure 5. A
code snippet is included in Appendix 12.

6 EXPERIMENTS

We compare our proposed algorithm to a set of alternatives: Backprop, Feedback Alignment and other
global variants of Forward Gradient. Backprop is a biologically implausible oracle, since it computes
true gradients whereas we compute noisy gradients. Feedback alignment computes approximate
gradients by using a set of random backward weights. We explain each method below.

1) Backprop (BP). We include the standard backprop algorithm as well as its local variants. Local
Backprop (L-BP) adds local losses as proposed, but still permits gradient to flow in an end-to-end
fashion. Local Greedy Backprop (LG-BP) in addition adds stop gradient operators in between
blocks. This is to provide a comparison to our methods by computing true local gradients. LG-BP
is similar in spirit to recent local learning algorithms (Belilovsky et al., 2019; Löwe et al., 2019).

7

Published as a conference paper at ICLR 2023

Dataset MNIST MNIST CIFAR-10 ImageNet
Network S/1/1 M/1/16 M/8/16 L/32/64
Metric Test / Train Err. (%) Test / Train Err. (%) Test / Train Err. (%) Test / Train Err. (%)

BP 2.66 / 0.00 2.41 / 0.00 33.62 / 0.00 36.82 / 14.69
L-BP 2.38 / 0.00 2.16 / 0.00 30.75 / 0.00 42.38 / 22.80
LG-BP 2.43 / 0.00 2.81 / 0.00 33.84 / 0.05 54.37 / 39.66

BP-free algorithms

FA 2.82 / 0.00 2.90 / 0.00 39.94 / 28.44 94.55 / 94.13
L-FA 3.21 / 0.00 2.90 / 0.00 39.74 / 28.98 87.20 / 85.69
LG-FA 3.11 / 0.00 2.50 / 0.00 39.73 / 32.32 85.45 / 82.83
DFA 3.31 / 0.00 3.17 / 0.00 38.80 / 33.69 91.17 / 90.28

FG-W 9.25 / 8.93 8.56 / 8.64 55.95 / 54.28 97.71 / 97.58
FG-A 3.24 / 1.53 3.76 / 1.75 59.72 / 41.29 98.83 / 98.80
LG-FG-W 9.25 / 8.93 5.66 / 4.59 52.70 / 51.71 97.39 / 97.29
LG-FG-A 3.24 / 1.53 2.55 / 0.00 30.68 / 19.39 58.37 / 44.86

Table 3: Supervised learning for image classification

Dataset CIFAR-10 CIFAR-10 ImageNet
Network M/8/16 L/8/64 L/32/64
Metric Test / Train Err. (%) Test / Train Err. (%) Test / Train Err. (%)

BP 24.11 / 21.08 17.53 / 13.35 55.66 / 49.79
L-BP 24.69 / 21.80 19.13 / 13.60 59.11 / 52.50
LG-BP 29.63 / 25.60 23.62 / 16.80 68.36 / 62.53

BP-free algorithms

FA 45.87 / 44.06 67.93 / 65.32 82.86 / 80.21
L-FA 37.73 / 36.13 31.05 / 26.97 83.18 / 79.80
LG-FA 36.72 / 34.06 30.49 / 25.56 82.57 / 79.53
DFA 46.09 / 42.76 39.26 / 37.17 93.51 / 92.51

FG-W 53.37 / 51.56 50.45 / 45.64 91.94 / 89.69
FG-A 54.59 / 52.96 56.63 / 56.09 97.83 / 97.79
LG-FG-W 52.66 / 50.23 52.27 / 48.67 91.36 / 88.81
LG-FG-A 32.88 / 29.73 26.81 / 23.90 73.24 / 66.89

Table 4: Self-supervised contrastive learning with linear readout

2) Feedback Alignment (FA). The standard FA algorithm (Lillicrap et al., 2016) adds a set of
random and fixed backward weights. We assume that the gradients to normalization layers and
activation functions are known since they do not have weight connections. Local Feedback Alignment
(L-FA) adds local losses as proposed, but still permits error signals to flow back. Local Greedy
Feedback Alignment (LG-FA) adds a stop gradient to prevent error signals from flowing back, similar
to the backprop-free algorithm in Nøkland & Eidnes (2019).

3) Forward Gradient (FG). This family of methods comprises our proposed algorithm and related
approaches. Weight-perturbed forward gradient (FG-W) was proposed by Baydin et al. (2022).
In this paper, we propose the activity perturbation variant (FG-A). We further add local objective
functions, producing LG-FG-W and LG-FG-A, which stand for Local Greedy Forward Gradient
Weight/Activity-Perturbed. For local perturbation to work, we have to add a stop gradient in between
blocks so each perturbation has a single corresponding loss. We expect LG-FG-A to achieve the best
performance among other variants because it can leverage the variance reduction benefit from both
activity perturbation and local losses.

Datasets. We use standard image classification datasets to benchmark the learning algorithms.
MNIST (LeCun, 1998) contains 70,000 28×28 handwritten digit images of class 0-9. CIFAR-
10 (Krizhevsky et al., 2009) contains 60,000 32×32 natural images of 10 semantic classes. Ima-
geNet (Deng et al., 2009) contains 1.3 million natural images of 1000 classes, which we resized
to 224×224. For CIFAR-10 and ImageNet, we applied both supervised learning and contrastive
learning. For MNIST, we applied supervised learning only. We designed different configurations of
the LocalMixer architecture for each dataset, listed in Table 2.

Data augmentation. For MNIST and CIFAR-10 supervised experiments, we do not apply data
augmentation. Data augmentation on ImageNet follows the open source implementation by Grill

8

Published as a conference paper at ICLR 2023

A
cc

ur
ac

y
(%

)

35

45

55

65

75

85

Global Block Block +
Patch

Patch +
Group

Block +
Patch +
Group

Test Train

(a) CIFAR-10 Supervised M/8

A
cc

ur
ac

y
(%

)

35

40

45

50

55

60

65

70

Global Block Block +
Patch

Patch +
Group

Block +
Patch +
Group

Test Train

(b) CIFAR-10 Contrastive M/8

A
cc

ur
ac

y
(%

)

0

20

40

60

Global Block Patch +
Group

Block +
Patch

Block +
Patch +
Group

Test Train

(c) ImageNet Supervised L/32

Figure 6: Effect of adding local losses at different locations on the performance of forward gradient

Steps

E
rr

or
 R

at
e

(%
)

25

35

45

55

65

0 25000 50000 75000

Group 1

Group 2

Group 4

Group 8

Group 16

Group 32

(a) Supervised Test

Steps

E
rr

or
 R

at
e

(%
)

15

25

35

45

55

65

0 25000 50000 75000

Group 1

Group 2

Group 4

Group 8

Group 16

Group 32

(b) Supervised Train

Steps

E
rr

or
 R

at
e

(%
)

25

35

45

55

65

20000 40000 60000 80000

Group 1

Group 2

Group 4

Group 8

Group 16

Group 32

(c) Contrastive Test

Steps

E
rr

or
 R

at
e

(%
)

25

35

45

55

65

20000 40000 60000 80000

Group 1

Group 2

Group 4

Group 8

Group 16

Group 32

(d) Contrastive Train

Figure 7: Error rate of M/8/* during CIFAR-10 training using different number of groups.

et al. (2020). Because forward gradient suffers from variance, we apply weaker augmentations for
contrastive learning experiments, increasing the area lower bound for random crops from 0.08 to
0.3-0.5. We find that this change has relatively little effect on the performance of backprop.

Main results. Our main results are shown in Table 3 and Table 4. In supervised experiments, there
is almost no cost of introducing local greedy losses, and our local forward gradient method can
match the test error of backprop on MNIST and CIFAR. Note that LG-FG-A fails to overfit the
training set to 0% error when trained without data augmentation. This suggests that variance could
still be an issue. For CIFAR-10 contrastive learning, our method obtains an error rate approaching
that obtained by backprop (26.81% vs. 17.53%), and most of the gap is due to greedy learning
vs. gradient estimation (6.09% vs. 3.19%). On ImageNet, we achieve reasonable performance
compared to backprop (58.37% vs. 36.82% for supervised and 73.24% vs. 55.66% for contrastive).
However, we find that the error due to greediness grows as the problem gets more complex and
requires more layers to cooperate. We significantly outperform the FA family on ImageNet (by 25%
for supervised and 10% for contrastive). Interestingly, local greedy FA also performs better than
global feedback alignment, which suggests that the benefit of local learning transfers to other types of
gradient approximation. TP-based methods were evaluated in Bartunov et al. (2018) and were found
to be worse than FA on ImageNet. In sum, although there is still some noticeable gap between our
method and backprop, we have made a large stride forward compared to backprop-free algorithms.
More results are included in the Appendix 14.

Effect of local losses. In Figure 6 we ablate the benefit of placing local losses at different locations:
blockwise, patchwise and groupwise. A combination of all three is the strongest. Global perturbation
learning fails to learn as the accuracy is similar to initializing with random weights.

Effect of groups. In Figure 7 we investigate the effect of different number of groups by showing the
training curves. Adding more groups bring significant improvement to local perturbation learning in
terms of lowering both training and test errors, but the effect vanishes around 8 channels / group.

7 CONCLUSION

It is often believed that perturbation-based learning cannot scale to large and deep networks. We
show that this is to some extent true because the gradient estimation variance grows with the number
of hidden dimensions for activity perturbation, and is even worse for shared weight perturbation. But
more optimistically, we show that a huge number of local greedy losses can help forward gradient
learning scale much better. We explored blockwise, patchwise, and groupwise local losses, and a
combination of all three, with a total of a quarter of a million losses in one of the larger networks,
performs the best. Local activity-perturbed forward gradient performs better than previous backprop-
free algorithms on larger networks. The idea of local losses opens up opportunities for different loss
designs and sheds light on the search for biologically plausible learning algorithms in the brain and
alternative computing devices.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENT

We thank Timothy Lillicrap for his helpful feedback on our earlier draft.

REFERENCES

Larry F Abbott and Sacha B Nelson. Synaptic plasticity: taming the beast. Nature neuroscience, 3
(11):1178–1183, 2000.

Mohamed Akrout, Collin Wilson, Peter C. Humphreys, Timothy P. Lillicrap, and Douglas B. Tweed.
Deep learning without weight transport. In Advances in Neural Information Processing Systems
32, NeurIPS, 2019.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

Pierre Baldi and Peter J. Sadowski. A theory of local learning, the learning channel, and the optimality
of backpropagation. Neural Networks, 83:51–74, 2016. doi: 10.1016/j.neunet.2016.07.006.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,
(5):834–846, 1983.

Sergey Bartunov, Adam Santoro, Blake A. Richards, Luke Marris, Geoffrey E. Hinton, and Timo-
thy P. Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms and
architectures. In Advances in Neural Information Processing Systems 31, NeurIPS, 2018.

Atilim Günes Baydin, Barak A. Pearlmutter, Don Syme, Frank Wood, and Philip H. S. Torr. Gradients
without backpropagation. CoRR, abs/2202.08587, 2022.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In Proceedings of the 36th International Conference on Machine Learning, ICML,
2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns.
In Proceedings of the 37th International Conference on Machine Learning, ICML, 2020.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. CoRR, abs/1407.7906, 2014.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. In Advances in Neural Information Processing Systems 19, NIPS, 2006.

Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang, and Yuhuai Wu. Stdp as presynaptic
activity times rate of change of postsynaptic activity approximates back-propagation. Neural
Computation, 10, 2017.

Elie L Bienenstock, Leon N Cooper, and Paul W Munro. Theory for the development of neuron selec-
tivity: orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience, 2
(1):32–48, 1982.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, ICML, 2020.

David G. Clark, L. F. Abbott, and SueYeon Chung. Credit assignment through broadcasting a global
error vector. In Advances in Neural Information Processing Systems 34, NeurIPS, 2021.

10

http://github.com/google/jax

Published as a conference paper at ICLR 2023

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR, 2021.

Ila R Fiete and H Sebastian Seung. Gradient learning in spiking neural networks by dynamic
perturbation of conductances. Physical review letters, 97(4):048104, 2006.

Aidan N. Gomez, Oscar Key, Stephen Gou, Nick Frosst, Jeff Dean, and Yarin Gal. Interlocking
backpropagation: Improving depthwise model-parallelism. CoRR, abs/2010.04116, 2020.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent - A
new approach to self-supervised learning. In Advances in Neural Information Processing Systems
33, NeurIPS, 2020.

Donald Olding Hebb. The organization of behavior: a neuropsychological theory. J. Wiley; Chapman
& Hall, 1949.

Geoffrey Hinton et al. How to do backpropagation in a brain. In Invited talk at the NIPS 2007 deep
learning workshop, 2007.

Geoffrey E. Hinton and James L. McClelland. Learning representations by recirculation. In Neural
Information Processing Systems, 1987.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Comput., 18(7):1527–1554, 2006. doi: 10.1162/neco.2006.18.7.1527.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015.

Yani Ioannou, Duncan P. Robertson, Roberto Cipolla, and Antonio Criminisi. Deep roots: Improving
CNN efficiency with hierarchical filter groups. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning, ICML, 2015.

Marwan Jabri and Barry Flower. Weight perturbation: An optimal architecture and learning technique
for analog vlsi feedforward and recurrent multilayer networks. IEEE Transactions on Neural
Networks, 3(1):154–157, 1992.

John F Kolen and Jordan B Pollack. Backpropagation without weight transport. In Proceedings of
IEEE International Conference on Neural Networks, ICNN, 1994.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems 25, NIPS,
2012.

Michael Laskin, Luke Metz, Seth Nabarrao, Mark Saroufim, Badreddine Noune, Carlo Luschi, Jascha
Sohl-Dickstein, and Pieter Abbeel. Parallel training of deep networks with local updates. CoRR,
abs/2012.03837, 2020.

Yann Le Cun, Conrad Galland, and Geoffrey E Hinton. Gemini: Gradient estimation through matrix
inversion after noise injection. In Advances in Neural Information Processing Systems, NIPS,
volume 1. Morgan-Kaufmann, 1988.

11

Published as a conference paper at ICLR 2023

Yann LeCun. A learning scheme for asymmetric threshold networks. Proceedings of COGNITIVA,
85(537):599–604, 1985.

Yann LeCun. The mnist database of handwritten digits, 1998. URL http://yann.lecun.com/
exdb/mnist/.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Joint european conference on machine learning and knowledge discovery in databases, pp.
498–515. Springer, 2015.

Qianli Liao, Joel Z. Leibo, and Tomaso A. Poggio. How important is weight symmetry in back-
propagation? In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI,
2016.

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications, 7(1):
13276, Nov 2016. ISSN 2041-1723. doi: 10.1038/ncomms13276.

Timothy P. Lillicrap, Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey Hinton. Backprop-
agation and the brain. Nature Reviews Neuroscience, 21(6):335–346, Jun 2020. ISSN 1471-0048.
doi: 10.1038/s41583-020-0277-3.

Sindy Löwe, Peter O’Connor, and Bastiaan S. Veeling. Putting an end to end-to-end: Gradient-
isolated learning of representations. In Advances in Neural Information Processing Systems 32,
NeurIPS, 2019.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In Advances in
Neural Information Processing Systems 29, NeurIPS, 2016.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In
Proceedings of the 36th International Conference on Machine Learning, ICML, 2019.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology, 15(3):267–273, 1982.

Adeetya Patel, Michael Eickenberg, and Eugene Belilovsky. Local learning with neuron groups. In
From Cells to Societies: Collective Learning Across Scales - ICLR 2022 Workshop, 2022.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–160,
1994.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised
learning with ladder networks. In Advances in Neural Information Processing Systems 28, NIPS,
2015.

Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H. Sinz, and Richard S. Zemel. Normalizing the
normalizers: Comparing and extending network normalization schemes. In Proceedings of the 5th
International Conference on Learning Representations, ICLR, 2017.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Vol. 1: Foundations, pp. 318–362, Cambridge, MA, USA, 1986. MIT Press. ISBN 026268053X.

Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a scalable alternative
to reinforcement learning. CoRR, abs/1703.03864, 2017.

Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction and reward.
Science, 275(5306):1593–1599, 1997.

H Sebastian Seung. Learning in spiking neural networks by reinforcement of stochastic synaptic
transmission. Neuron, 40(6):1063–1073, 2003.

Eren Sezener, Agnieszka Grabska-Barwińska, Dimitar Kostadinov, Maxime Beau, Sanjukta Krish-
nagopal, David Budden, Marcus Hutter, Joel Veness, Matthew Botvinick, Claudia Clopath, et al. A
rapid and efficient learning rule for biological neural circuits. BioRxiv, 2021.

12

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Published as a conference paper at ICLR 2023

David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning by
directional gradient descent. In Proceedings of the 10th International Conference on Learning
Representations, ICLR, 2022.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evol Comput, 10(2):99–127, 2002.

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In Advances in Neural
Information Processing Systems 34, NeurIPS, 2021.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30, NIPS, 2017.

Joel Veness, Tor Lattimore, Avishkar Bhoopchand, Agnieszka Grabska-Barwinska, Christopher Mat-
tern, and Peter Toth. Online learning with gated linear networks. arXiv preprint arXiv:1712.01897,
2017.

Joel Veness, Tor Lattimore, David Budden, Avishkar Bhoopchand, Christopher Mattern, Agnieszka
Grabska-Barwinska, Eren Sezener, Jianan Wang, Peter Toth, Simon Schmitt, et al. Gated linear
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2021.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res., 11:3371–3408, 2010. doi: 10.5555/1756006.1953039.

Yulin Wang, Zanlin Ni, Shiji Song, Le Yang, and Gao Huang. Revisiting locally supervised learning:
an alternative to end-to-end training. In 9th International Conference on Learning Representations,
ICLR, 2021.

Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger B. Grosse. Flipout: Efficient pseudo-
independent weight perturbations on mini-batches. In 6th International Conference on Learning
Representations, ICLR, 2018.

R. E. Wengert. A simple automatic derivative evaluation program. Commun. ACM, 7(8):463–464,
1964.

Paul Werbos. Beyond regression:" new tools for prediction and analysis in the behavioral sciences.
Ph. D. dissertation, Harvard University, 1974.

Justin Werfel, Xiaohui Xie, and H Seung. Learning curves for stochastic gradient descent in linear
feedforward networks. Advances in Neural Information Processing Systems 16, NIPS, 2003.

L. Darrell Whitley. Genetic reinforcement learning for neurocontrol problems. Mach. Learn., 13:
259–284, 1993.

James C.R. Whittington and Rafal Bogacz. Theories of error back-propagation in the brain. Trends in
Cognitive Sciences, 23(3):235–250, Mar 2019. ISSN 1364-6613. doi: 10.1016/j.tics.2018.12.005.

Bernard Widrow and Marcian E Hoff. Adaptive switching circuits. Technical report, Stanford Univ
Ca Stanford Electronics Labs, 1960.

Bernard Widrow and Michael A. Lehr. 30 years of adaptive neural networks: perceptron, madaline,
and backpropagation. Proc. IEEE, 78(9):1415–1442, 1990.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

13

Published as a conference paper at ICLR 2023

Sunghyeon Woo, Jeongwoo Park, Jiwoo Hong, and Dongsuk Jeon. Activation sharing with asymmet-
ric paths solves weight transport problem without bidirectional connection. In Advances in Neural
Information Processing Systems 34, NeurIPS, 2021.

Yuxin Wu and Kaiming He. Group normalization. In 15th European Conference on Computer Vision,
ECCV, 2018.

Will Xiao, Honglin Chen, Qianli Liao, and Tomaso A. Poggio. Biologically-plausible learning
algorithms can scale to large datasets. In Proceedings of the 7th International Conference on
Learning Representations, ICLR, 2019.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2017.

Xiaohui Xie and H Sebastian Seung. Spike-based learning rules and stabilization of persistent neural
activity. Advances in Neural Information Processing Systems 12, NIPS, 1999.

Yuwen Xiong, Mengye Ren, and Raquel Urtasun. Loco: Local contrastive representation learning. In
Advances in Neural Information Processing Systems 33, NeurIPS, 2020.

14

Published as a conference paper at ICLR 2023

8 PROOFS OF UNBIASEDNESS

In this section, we show the unbiasedness of gw(wij) and ga(wij). The first proof was given
by Baydin et al. (2022).

Proposition 1. gw(wij) is an unbiased gradient estimator if {vij} are independent zero-mean
uni-variance random variables (Baydin et al., 2022).

Proof. We can rewrite the weight perturbation estimator as

gw(wij) =

∑
i′j′

∇wi′j′vi′j′

 vij = ∇wijv2ij +
∑
i′j′ 6=ij

∇wi′j′vijvi′j′ . (7)

Note that since each dimension of v is an independent zero-mean uni-variance random variable,
E[vij] = 0, E[v2ij] = Var[vij] + E[vij]2 = 1 + 0 = 1, and E[vijvi′j′] = 0 if ij 6= i′j′.

E[gw(wij)] = E
[
∇wijv2ij

]
+ E

 ∑
i′j′ 6=ij

∇wi′j′vijvi′j′

 (8)

= ∇wij E
[
v2ij
]
+
∑
i′j′ 6=ij

∇wi′j′ E [vijvi′j′] (9)

= ∇wij · 1 +
∑
i′j′ 6=ij

∇wi′j′ · 0 (10)

= ∇wij . (11)

Proposition 2. ga(wij) is an unbiased gradient estimator if {uj} are independent zero-mean uni-
variance random variables.

Proof. The true gradient to the weights∇wij is the product between xj and∇zk. Therefore, we can
rewrite the weight perturbation estimator as

ga(wij) = xi

∑
j′

∇zj′uj′

uj = xj∇zju2j + xi

∑
j′ 6=j

∇zj′uj′

uj (12)

= xi∇zju2j +

∑
j′ 6=j

xi∇zj′uj′

uj (13)

= ∇wiju2j +

∑
j′ 6=j

∇wij′uj′

uj . (14)

Since each dimension of u is an independent zero-mean uni-variance random variable, E[uj] = 0,
E[u2j] = Var[uj] + E[uj]2 = 1 + 0 = 1, and E[ujuj′] = 0 if j 6= j′.

E[ga(wij)] = E

∇wiju2j +
∑
j′ 6=j

∇wij′uj′

uj

 (15)

= ∇wij E
[
u2j
]
+
∑
j′ 6=j

∇wij′ E [ujuj′] (16)

= ∇wij · 1 +
∑
j′ 6=j

∇wij′ · 0 (17)

= ∇wij . (18)

15

Published as a conference paper at ICLR 2023

9 PROOFS OF VARIANCES

We followed Wen et al. (2018) and show that the variance of the gradient estimators can be decom-
posed.

Lemma 1. The variance of the gradient estimator can be decomposed into three parts:
Var (g(wij)|x) = Z1 +Z2 +Z3, where Z1 = 1

N V1 Varx (∇wij |x), Z2 = 1
N Ex [Varv (g(wij)|x)],

Z3 = 1
N2 EB

[∑
x(n)∈B

∑
x(m)∈B\{x(n)}Covv(g(wij)|x(n), g(wij)|x(m))

]
.

Proof. By the law of total variance,

Var (g(wij)) = Var
B

(
E
v
[g(wij)|B]

)
+ E
B

[
Var
v
(g(wij)|B)

]
. (19)

The first term comes from the gradient variance from data sampling, and it vanishes as batch size
grows:

Var
B

(
E
v
[g(wij)|B]

)
(20)

=Var
B

E
v

 1

N

∑
x(n)∈B

g(wij)|x(n)
 (21)

=
1

N2
Var
B

E
v

 ∑
x(n)∈B

g(wij)|x(n)
 (22)

=
1

N2
Var
B

 ∑
x(n)∈B

E
v

[
g(wij)|x(n)

] (23)

=
1

N2
Var
B

 ∑
x(n)∈B

∇wij |x(n)

 (24)

=
1

N2

∑
n

Var
x

(∇wij |x) =
1

N
Var
x

(∇wij |x) = Z1. (25)

The second term comes from the gradient estimation variance:

E
B

[
Var
v

(g(wij)|B)
]

(26)

=E
B

Var
v

 1

N

∑
x(n)∈B

g(wij)

∣∣∣∣∣∣x(n)
 (27)

=E
B

 1

N2
Var
v

 ∑
x(n)∈B

g(wij)

∣∣∣∣∣∣x(n)
 (28)

=E
B

 1

N2

∑
x(n)∈B

Var
v

(
g(wij)|x(n)

)
+

∑
x(n)∈B

∑
x(m)∈B\{x(n)}

Cov
v

(g(wij)|x(n), g(wij)|x(m))

(29)

=
1

N
E
x

[
Var
v

(g(wij)|x)
]
+

1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

Cov
v

(g(wij)|x(n), g(wij)|x(m))

(30)

=Z2 + Z3. (31)

Remark. Z2 is the variance of the gradient estimator in the deterministic case, and Z3 measures the
correlation between different gradient estimation within the batch. The Z3 is zero if the perturbations
are independent, and non-zero if the perturbations are shared within the mini-batch.

16

Published as a conference paper at ICLR 2023

Proposition 3. Let p× q be the size of the weight matrix, the element-wise average variance of the
weight perturbed gradient estimator with a batch size N is pq+2

N V + (pq + 1)S if the perturbations
are shared across the batch, and pq+2

N V + pq+1
N S if they are independent, where V is the element-wise

average variance of the true gradient, and S is the element-wise average squared gradient.

Proof. We first derive Z2.

Z2 =
1

N
E
x

[
Var
v

(gw(wij)|x)
]

(32)

=
1

N
E
x

Var
v

∑
i′j′

∇wi′j′vi′j′

 vij

 (33)

=
1

N
E
x

Var
v

∇wijv2ij + ∑
i′j′ 6=ij

∇wi′j′vijvi′j′

 (34)

=
1

N
E
x

Var
v

(
∇wijv2ij

)
+Var

v

 ∑
i′j′ 6=ij

∇wi′j′vijvi′j′

+ 2Cov
v

∇wijv2ij , ∑
i′j′ 6=ij

∇wijvijvi′j′

(35)

=
1

N
E
x

Var (∇wijv2ij)+Var
v

 ∑
i′j′ 6=ij

∇wi′j′vijvi′j′

+ (36)

2E
v

 ∑
i′j′ 6=ij

∇wij∇wi′j′v3ijvi′j′

− 2E
v

[
∇wijv2ij

]
E
v

 ∑
i′j′ 6=ij

∇wi′j′vijvi′j′

 (37)

=
1

N
E
x

∇w2
ij Var

v

(
v2ij
)
+Var

v

 ∑
i′j′ 6=ij

∇wi′j′vijvi′j′

+ (38)

2
∑
i′j′ 6=ij

∇wij∇wi′j′ E
v

[
v3ijvi′j′

]
− 2∇wij E

v

[
v2ij
] ∑

i′j′ 6=ij

∇wi′j′ E
v
[vijvi′j′]

 (39)

=
1

N
E
x

∇w2
ij Var

v

(
v2ij
)
+Var

v

 ∑
i′j′ 6=ij

∇wi′j′vijvi′j′

+ (40)

2
∑
i′j′ 6=ij

∇wij∇wi′j′ · 0− 2∇wij · 1

 ∑
i′j′ 6=ij

∇wi′j′ · 0

 (41)

=
1

N
E
x

∇w2
ij Var

v

(
v2ij
)
+Var

v

 ∑
i′j′ 6=ij

∇wi′j′vijvi′j′

 (42)

=
1

N
E
x

∇w2
ij · (E[v4ij]− E

v
[v2ij]

2) +
∑
i′j′ 6=ij

Var
v

(∇wi′j′vijvi′j′)

 (43)

=
1

N
E
x

∇w2
ij(3Var

v
[vij]

2 − E
v
[v2ij]

2) +
∑
i′j′ 6=ij

∇w2
i′j′ Var

v
(vijvi′j′)

 (44)

=
1

N
E
x

[
2∇w2

ij

]
+

1

N
E
x

 ∑
i′j′ 6=ij

∇w2
i′j′(Var

v
[vij] + E

v
[vi′j′]

2)(Var
v
[vi′j′] + E

v
[vi′j′]

2)− E
v
[vij]

2 E
v
[vi′j′]

2

(45)

17

Published as a conference paper at ICLR 2023

=
2

N
∇w2

ij +
2

N
Var
x

(∇wij |x) +
1

N
E
x

 ∑
i′j′ 6=ij

∇w2
i′j′ Var

v
(vij)Var

v
(vi′j′)

 (46)

=
2

N
∇w2

ij +
2

N
Var
x

(∇wij |x) +
1

N

∑
i′j′ 6=ij

E
x

[
∇w2

i′j′
]

(47)

=
1

N

∇w2

ij +Var
x

(∇wij |x) +
∑
i′j′

(
∇w2

i′j′ +Var
x

(∇wi′j′ |x)
) . (48)

Z3 is nonzero if the perturbations are shared within a batch. Assuming that the perturbations are
shared,

Z3 =
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

Cov
v

(gw(wij)|x(n), gw(wij)|x(m))

 (49)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

[
gw(wij)|x(n) gw(wij)|x(m)

]
− E

v

[
gw(wij)|x(n)

]
E
v

[
gw(wij)|x(m)

]
(50)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

[
gw(wij)|x(n) gw(wij)|x(m)

]
−∇wij |x(n)∇wij |x(m)

(51)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

∑
i′j′

∇wi′j′ |x(n)vi′j′

 vij

∑
i′j′

∇wi′j′ |x(m)vi′j′

 vij

−
(52)

∇wij |x(n)∇wij |x(m)
]

(53)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

∇wij |x(n)v2ij + ∑
i′j′ 6=ij

∇wi′j′ |x(n)vi′j′vij

 (54)

∇wij |x(m)v2ij +
∑
i′j′ 6=ij

∇wi′j′ |x(m)vi′j′vij

− (55)

1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

∇wij |x(n)∇wij |x(m)

 (56)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

[
∇wij |x(n)∇wij |x(m)v4ij+ (57)

∇wij |x(n)v2ij
∑
i′j′ 6=ij

∇wi′j′ |x(m)vi′j′vij +∇wij |x(m)v2ij
∑
i′j′ 6=ij

∇wi′j′ |x(n)vi′j′vij+ (58)

∑
i′j′ 6=ij

∇wi′j′ |x(n)vi′j′vij
∑
i′j′ 6=ij

∇wi′j′ |x(m)vi′j′vij

− (59)

1

N2

 E
x(n)

E
x(m)

∑
n

∑
m 6=n

∇wij |x(n)∇wij |x(m)

 (60)

18

Published as a conference paper at ICLR 2023

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

[
∇wij |x(n)∇wij |x(m)v4ij+ (61)

 ∑
i′j′ 6=ij

∇wi′j′ |x(n)vi′j′

 ∑
i′j′ 6=ij

∇wi′j′ |x(m)vi′j′

 v2ij

− 1

N2

∑
n

∑
m 6=n

∇w2

ij

 (62)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

[
∇wij |x(n)∇wij |x(m)v4ij+ (63)

∑
i′j′ 6=ij

∇wi′j′ |x(n)∇wi′j′ |x(m)v2i′j′v
2
ij +

∑
i′j′ 6=ij

∑
i′′j′′ 6=ij,i′j′

∇wi′j′ |x(n)∇wi′j′ |x(m)vi′j′vi′′j′′v
2
ij

−
(64)

1

N2

∑
n

∑
m 6=n

∇w2

ij

 (65)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

∇wij |x(n)∇wij |x(m)v4ij +
∑
i′j′ 6=ij

∇wi′j′ |x(n)∇wi′j′ |x(m)v2i′j′v
2
ij

−
(66)

1

N2

∑
n

∑
m 6=n

∇w2

ij

 (67)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

∇wij |x(n)∇wij |x(m) E
v

[
v4ij
]
+ (68)

∑
i′j′ 6=ij

∇wi′j′ |x(n)∇wi′j′ |x(m) E
v

[
v2i′j′

]
E
v

[
v2ij
]− 1

N2

∑
n

∑
m6=n

∇w2

ij

 (69)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

3∇wij |x(n)∇wij |x(m) +
∑
i′j′ 6=ij

∇wi′j′ |x(n)∇wi′j′ |x(m)

−
(70)

1

N2

∑
n

∑
m 6=n

∇w2

ij

 (71)

=
1

N2

∑
n

∑
m6=n

3E
x
[∇wij |x]2 +

∑
i′j′ 6=ij

E
x
[∇wi′j′ |x]2

− 1

N2

∑
n

∑
m 6=n

∇w2

ij

 (72)

=
1

N2

∑
n

∑
m6=n

3∇w2

ij +
∑
i′j′ 6=ij

∇w2

i′j′

− 1

N2

∑
n

∑
m6=n

∇w2

ij

 (73)

=
1

N2

∑
n

∑
m6=n

2∇w2

ij +
∑
i′j′ 6=ij

∇w2

i′j′

 =
N(N − 1)

N2

∇w2

ij +
∑
i′j′

∇w2

i′j′

 . (74)

19

Published as a conference paper at ICLR 2023

Lastly, we average the variance across all weight dimensions:

mVar(gw(wij)) =
1

pq

∑
ij

Var(gw(wij)) (75)

=
1

pq

∑
ij

{Z1 + Z2 + Z3} (76)

=
1

pq

∑
ij

{
1

N
Var
x

(∇wij |x)+ (77)

1

N

∇w2

ij +Var
x

(∇wij |x) +
∑
i′j′

(
∇w2

i′j′ +Var
x

(∇wi′j′ |x)
)+ (78)

N(N − 1)

N2

∇w2

ij +
∑
i′j′

∇w2

i′j′

 (79)

=
1

pq

∑
ij

{
1

N
Var
x

(∇wij |x)+ (80)

1

N

Var
x

(∇wij |x) +
∑
i′j′

Var
x

(∇wi′j′ |x)

+

∇w2

ij +
∑
i′j′

∇w2

i′j′

 (81)

=
2

N
mVar (∇w) + pq

N
mVar (∇w) + (pq + 1)mSqNorm(∇w) (82)

=
pq + 2

N
V + (pq + 1)S. (83)

If the perturbations are independent, we show that Z3 is 0.

Z3 =
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

Cov
v

(gw(wij)|x(n), gw(wij)|x(m))

 (84)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

[
gw(wij)|x(n) gw(wij)|x(m)

]
− E

v

[
gw(wij)|x(n)

]
E
v

[
gw(wij)|x(m)

]
(85)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

[
gw(wij)|x(n) gw(wij)|x(m)

]
−∇wij |x(n)∇wij |x(m)

(86)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

∑
j′

∇wij′ |x(n)v(n)i′j′

 v
(n)
ij

∑
j′

∇wij′ |x(m)v
(m)
i′j′

 v
(m)
ij

(87)

−∇wij |x(n)∇wij |x(m)
]

(88)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

∑
j′

∑
j′′

∇wij′ |x(n)∇wij′′ |x(m)v
(n)
i′j′v

(m)
i′′j′′v

(n)
ij v

(m)
ij

−
(89)

1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

∇wij |x(n)∇wij |x(m)

 (90)

20

Published as a conference paper at ICLR 2023

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

[
∇wij |x(n)∇wij |x(m)v

(n)2
ij v

(m)2
ij + (91)

∇wij |x(n)v(n)2ij v
(m)
ij

∑
i′j′ 6=j

∇wij′ |x(m)v
(m)
i′j′ +∇wij |x(m)v

(m)2
ij v

(n)
ij

∑
i′j′ 6=j

∇wij′ |x(n)v(n)i′j′+

(92)∑
i′j′ 6=ij

∇wij′ |x(m)∇wij′ |x(n)v(m)
i′j′ v

(n)
i′j′v

(m)
ij v

(n)
ij + (93)

∑
i′j′ 6=ij

∑
i′′j′′ /∈{ij,j′j′}

∇wi′j′ |x(n)vi′j′∇wij′ |x(m)v
(n)
i′j′v

(m)
i′′j′′v

(n)
ij v

(m)
ij

− (94)

1

N2

 E
x(n)

E
x(m)

∑
n

∑
m 6=n

∇wij |x(n)∇wij |x(m)

 (95)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

[
∇wij |x(n)∇wij |x(m)v

(n)2
ij v

(m)2
ij + (96)

∑
i′j′ 6=ij

∇wi′j′ |x(m)∇wi′j′ |x(n)v(m)
i′j′ v

(n)
i′j′v

(m)
ij v

(n)
ij

− (97)

1

N2

 E
x(n)

E
x(m)

∑
n

∑
m 6=n

∇wij |x(n)∇wij |x(m)

 (98)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
v

[
∇wij |x(n)∇wij |x(m)v

(n)2
ij v

(m)2
ij

]− (99)

1

N2

∑
n

∑
m6=n

∇w2

ij

 (100)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

∇wij |x(n)∇wij |x(m) E
v

[
v
(n)2
ij

]
E
v

[
v
(m)2
ij

]− (101)

1

N2

∑
n

∑
m6=n

∇w2

ij

 (102)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

∇wij |x(n)∇wij |x(m)

− 1

N2

∑
n

∑
m6=n

∇w2

ij

 (103)

=
1

N2

∑
n

∑
m6=n

E
x
[∇wij |x]2

− 1

N2

∑
n

∑
m 6=n

∇w2

ij

 (104)

=0. (105)

21

Published as a conference paper at ICLR 2023

Then the average variance becomes:

mVar(gw(wij)) =
1

pq

∑
ij

Var(gw(wij)) (106)

=
1

pq

∑
ij

{Z1 + Z2 + Z3} (107)

=
1

pq

∑
ij

{
1

N
Var
x

(∇wij |x)+ (108)

1

N

∇w2

ij +Var
x

(∇wij |x) +
∑
i′j′

(
∇w2

i′j′ +Var
x

(∇wi′j′ |x)
) (109)

=
pq + 2

N
mVar (∇w) + pq + 1

N
mSqNorm(∇w) (110)

=
pq + 2

N
V +

pq + 1

N
S. (111)

Proposition 4. Let p× q be the size of the weight matrix, the element-wise average variance of the
activity perturbed gradient estimator with a batch size N is q+2

N V + (q + 1)S if the perturbations
are shared across the batch, and q+2

N V + q+1
N S if they are independent, where V is the element-wise

average variance of the true gradient, and S is the element-wise average squared gradient.

Proof.

Z2 =
1

N
E
x

[
Var
u

(ga(wij)|x)
]

(112)

=
1

N
E
x

Var
u

∑
j′

∇wij′uj′

uj

 (113)

=
1

N
E
x

Var
u

∇wiju2j +∑
j′ 6=j

∇wj′ujuj′

 (114)

=
1

N
E
x

Var
u

(
∇wiju2j

)
+Var

u

∑
j′ 6=j

∇wij′ujuj′

+ (115)

2Cov
u

∇wiju2j ,∑
j′ 6=j

∇wijujuj′

 (116)

=
1

N
E
x

Var
u

(
∇wiju2j

)
+Var

u

 ∑
i′j′ 6=ij

∇wij′ujuj′

+ (117)

2E
u

∑
j′ 6=j

∇wij∇wij′u3juj′

− 2E
u

[
∇wiju2j

]
E
u

∑
j′ 6=j

∇wij′ujuj′

 (118)

=
1

N
E
x

∇w2
ij Var

u

(
u2j
)
+Var

u

∑
j′ 6=j

∇wij′ujuj′

+ (119)

2
∑
j′ 6=j

∇wij∇wij′ E
u

[
u3juj′

]
− 2∇wij E

u

[
u2j
]∑

j′ 6=j

∇wij′ E
u
[ujuj′]

 (120)

22

Published as a conference paper at ICLR 2023

=
1

N
E
x

∇w2
ij Var

u

(
u2j
)
+Var

u

∑
j′ 6=j

∇wij′ujuj′

+ (121)

2
∑
j′ 6=j

∇wij∇wij′ · 0− 2∇wij · 1

∑
j′ 6=j

∇wi′j′ · 0

 (122)

=
1

N
E
x

∇w2
ij Var

u

(
u2j
)
+Var

u

∑
j′ 6=j

∇wij′ujuj′

 (123)

=
1

N
E
x

∇w2
ij · (E

u
[u4j]− E

u
[u2j]

2) +
∑
j′ 6=j

Var
u

(∇wij′ujuj′)

 (124)

=
1

N
E
x

∇w2
ij(3Var

u
(uj)

2 − E
u
[u2j]

2) +
∑
j′ 6=j

∇w2
j′ Var

u
(ujuj′)

 (125)

=
1

N
E
x

[
2∇w2

ij

]
+ (126)

1

N
E
x

∑
j′ 6=j

∇w2
ij′(Var

u
[uj] + E

u
[uj′]

2)(Var
u

[uj′] + E
u
[uj′]

2)− E
u
[uj]

2 E
u
[uj′]

2

 (127)

=
2

N
∇w2

ij +
2

N
Var
x

(∇wij |x) +
1

N
E
x

∑
j′ 6=j

∇w2
ij′ Var

u
(uj)Var

u
(uj′)

 (128)

=
2

N
∇w2

ij +
2

N
Var
x

(∇wij |x) +
1

N

∑
j′ 6=j

E
x

[
∇w2

j′
]

(129)

=
1

N

∇w2

ij +Var
x

(∇wij |x) +
∑
j′

(
∇w2

ij′ +Var
x

(∇wij′ |x)
) . (130)

Z3 is nonzero if the perturbations are shared within a batch. Assuming that the perturbations are
shared,

Z3 =
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

Cov
u

(ga(wij)|x(n), ga(wij)|x(m))

 (131)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

[
ga(wij)|x(n) ga(wij)|x(m)

]
− E

u

[
ga(wij)|x(n)

]
E
u

[
ga(wij)|x(m)

]
(132)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

[
ga(wij)|x(n) ga(wij)|x(m)

]
−∇wij |x(n)∇wij |x(m)

(133)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

∑
j′

∇wij′ |x(n)uj′

uj

∑
j′

∇wij′ |x(m)uj′

uj

−
(134)

∇wij |x(n)∇wij |x(m)
]

(135)

23

Published as a conference paper at ICLR 2023

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

∑
j′

∑
j′′

∇wij′ |x(n)∇wij′′ |x(m)uj′uj′′u
2
j

− (136)

1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

∇wij |x(n)∇wij |x(m)

 (137)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

[
∇wij |x(n)∇wij |x(m)v4ij+ (138)

∇wij |x(n)u3j
∑
j′ 6=j

∇wij′ |x(m)uj′ +∇wij |x(m)u3j
∑
j′ 6=j

∇wij′ |x(n)uj′+ (139)

∑
j′ 6=j

∇wij′ |x(m)∇wij′ |x(n)u2j′u2j+ (140)

∑
j′ 6=j

∑
j′′ /∈{j,j′}

∇wij′ |x(n)uj′∇wij′ |x(m)uj′uj′′u
2
j

− (141)

1

N2

 E
x(n)

E
x(m)

∑
n

∑
m6=n

∇wij |x(n)∇wij |x(m)

 (142)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

∇wij |x(n)∇wij |x(m)v4ij +
∑
j′ 6=j

∇wij′ |x(m)∇wij′ |x(n)u2j′u2j

−
(143)

1

N2

 E
x(n)

E
x(m)

∑
n

∑
m6=n

∇wij |x(n)∇wij |x(m)

 (144)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

∇wij |x(n)∇wij |x(m)v4ij +
∑
j′ 6=j

∇wij′ |x(m)∇wij′ |x(n)u2j′u2j

−
(145)

1

N2

∑
n

∑
m 6=n

∇w2

ij

 (146)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

∇wij |x(n)∇wij |x(m) E
v

[
v4ij
]
+
∑
j′ 6=j

∇wij′ |x(n)∇wij′ |x(m) E
u

[
u2j′
]
E
u

[
u2j
]−

(147)

1

N2

∑
n

∑
m 6=n

∇w2

ij

 (148)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

3∇wij |x(n)∇wij |x(m) +
∑
j′ 6=j

∇wij′ |x(n)∇wij′ |x(m)

− (149)

1

N2

∑
n

∑
m 6=n

∇w2

ij

 (150)

24

Published as a conference paper at ICLR 2023

=
1

N2

∑
n

∑
m6=n

3E
x
[∇wij |x]2 +

∑
j′ 6=j

E
x
[∇wij′ |x]2

− 1

N2

∑
n

∑
m6=n

∇w2

ij

 (151)

=
1

N2

∑
n

∑
m6=n

2∇w2

ij +
∑
j′ 6=j

∇w2

ij′

− 1

N2

∑
n

∑
m 6=n

∇w2

ij

 (152)

=
1

N2

∑
n

∑
m6=n

∇w2

ij +
∑
j′ 6=j

∇w2

ij′

 (153)

=
N(N − 1)

N2

∇w2

ij +
∑
j′ 6=j

∇w2

ij′

 . (154)

Then we compute the average variance across all weight dimensions (for shared perturbation):

mVar(ga(wij)) =
1

pq

∑
ij

Var(ga(wij)) (155)

=
1

pq

∑
ij

{Z1 + Z2 + Z3} (156)

=
1

pq

∑
ij

{
1

N
Var
x

(∇wij |x)+ (157)

1

N

∇w2

ij +Var
x

(∇wij |x) +
∑
j′

(
∇w2

ij′ +Var
x

(∇wij′ |x)
)+ (158)

N(N − 1)

N2

∇w2

ij +
∑
j′ 6=j

∇w2

ij′

 (159)

=
1

pq

∑
ij

{
1

N
Var
x

(∇wij |x)+ (160)

1

N

Var
x

(∇wij |x) +
∑
j′

Var
x

(∇wij′ |x)

+

∇w2

ij +
∑
j′

∇w2

ij′

 (161)

=
2

N
mVar (∇w) + q

N
mVar (∇w) + (q + 1)mSqNorm(∇w) (162)

=
q + 2

N
V + (q + 1)S. (163)

If the perturbations are independent, we show that Z3 is 0.

Z3 =
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

Cov
u

(ga(wij)|x(n), ga(wij)|x(m))

 (164)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

[
ga(wij)|x(n) ga(wij)|x(m)

]
− E

u

[
ga(wij)|x(n)

]
E
u

[
ga(wij)|x(m)

]
(165)

25

Published as a conference paper at ICLR 2023

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

[
ga(wij)|x(n) ga(wij)|x(m)

]
−∇wij |x(n)∇wij |x(m)

 (166)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

∑
j′

∇wij′ |x(n)u(n)j′

u
(n)
j

∑
j′

∇wij′ |x(m)u
(m)
j′

u
(m)
j

−
(167)

∇wij |x(n)∇wij |x(m)
]

(168)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

∑
j′

∑
j′′

∇wij′ |x(n)∇wij′′ |x(m)u
(n)
j′ u

(m)
j′′ u

(n)
j u

(m)
j

− (169)

1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

∇wij |x(n)∇wij |x(m)

 (170)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

[
∇wij |x(n)∇wij |x(m)u

(n)2
j u

(m)2
j + (171)

∇wij |x(n)u(n)2j u
(m)
j

∑
j′ 6=j

∇wij′ |x(m)u
(m)
j′ +∇wij |x(m)u

(m)2
j u

(n)
j

∑
j′ 6=j

∇wij′ |x(n)u(n)j′ +

(172)∑
j′ 6=j

∇wij′ |x(m)∇wij′ |x(n)u(m)
j′ u

(n)
j′ u

(m)
j u

(n)
j + (173)

∑
j′ 6=j

∑
j′′ /∈{j,j′}

∇wij′ |x(n)uj′∇wij′ |x(m)u
(n)
j′ u

(m)
j′′ u

(n)
j u

(m)
j

− (174)

1

N2

 E
x(n)

E
x(m)

∑
n

∑
m 6=n

∇wij |x(n)∇wij |x(m)

 (175)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

[
∇wij |x(n)∇wij |x(m)u

(n)2
j u

(m)2
j + (176)

∑
j′ 6=j

∇wij′ |x(m)∇wij′ |x(n)u(m)
j′ u

(n)
j′ u

(m)
j u

(n)
j

− (177)

1

N2

 E
x(n)

E
x(m)

∑
n

∑
m 6=n

∇wij |x(n)∇wij |x(m)

 (178)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

E
u

[
∇wij |x(n)∇wij |x(m)u

(n)2
j u

(m)2
j

]− (179)

1

N2

∑
n

∑
m 6=n

∇w2

ij

 (180)

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

∇wij |x(n)∇wij |x(m) E
u

[
u
(n)2
j

]
E
u

[
u
(m)2
j

]− (181)

1

N2

∑
n

∑
m 6=n

∇w2

ij

 (182)

26

Published as a conference paper at ICLR 2023

=
1

N2
E
B

 ∑
x(n)∈B

∑
x(m)∈B\{x(n)}

∇wij |x(n)∇wij |x(m)

− 1

N2

∑
n

∑
m 6=n

∇w2

ij

 (183)

=
1

N2

∑
n

∑
m6=n

E
x
[∇wij |x]2

− 1

N2

∑
n

∑
m 6=n

∇w2

ij

 (184)

=0. (185)

Then the average variance becomes:

mVar(ga(wij)) =
1

pq

∑
ij

Var(ga(wij)) (186)

=
1

pq

∑
ij

{Z1 + Z2 + Z3} (187)

=
1

pq

∑
ij

{
1

N
Var
x

(∇wij |x)+ (188)

1

N

∇w2

ij +Var
x

(∇wij |x) +
∑
j′

(
∇w2

ij′ +Var
x

(∇wij′ |x)
) (189)

=
q + 2

N
mVar (∇w) + q + 1

N
mSqNorm(∇w) (190)

=
q + 2

N
V +

q + 1

N
S. (191)

100 101 102 103

N (Batch Size) (p=4, q=4)

10 2

10 1

100

101

102

Gr
ad

ie
nt

 V
ar

ia
nc

e

wt perturb
ind wt perturb
act perturb
backprop
wt perturb (theory)
ind wt perturb (theory)
act perturb (theory)
backprop (theory)

100 101 102

p (Fan In) (N=4, q=4)

100

101

102

100 101 102

q (Fan Out) (N=4, p=4)

100

101

102

103

104

105

Figure 8: Numerical verification of the theoretical variance properties

10 NUMERICAL SIMULATION OF VARIANCES

In Figure 8, we ran numerical simulation experiments to verify our analytical variance properties.
We used a multi-layer network with 4 input units, 4 hidden units, 1 output unit, a tanh activation
function, and the mean squared error loss. We varied the batch size (N) between 1 and 4096. We
tested the gradient estimator of the first layer weights using 5000 random samples. We also calculated
the theoretical variance by applying the gradient norm and gradient variance constants found by
backprop, from 5000 mini-batch true gradients. We then fixed the batch size to be 4 and vary the
number of input units (p, fan in) and the number of hidden units (q, fan out) between 1 and 256. The
theoretical variance for backprop was only computed for the batch size experiment since it is an
inverse relationship (1

N), but for fan in and fan out, we do not aim to analyze the theoretical variances
here. “wt perturb” stands for weight perturbation with shared noise; “ind wt perturb” stands for
weight perturbation with independent noise; and “act perturb” stands for activity perturbation with
independent noise. Note that indepedent weight perturbation is much more costly to compute in

27

Published as a conference paper at ICLR 2023

neural networks. As shown in the figure, the empirical variances match very well with our theoretical
predictions.

11 TRAINING DETAILS

Here we provide more training details.

MNIST. We use a batch size of 128, and the SGD optimizer with learning rate 0.01 and momentum
0.9 for a total of 1000 epochs with no data augmentation and a linear learning rate decay schedule.

CIFAR-10. For the supervised experiments, we use a batch size of 128 and the SGD optimizer with
learning rate 0.01 and momentum 0.9 for a total of 200 epochs with no data augmentation and a
linear learning rate decay schedule. For the contrastive M/8 experiments, we use a batch size of 512
and the SGD optimizer with learning rate 1.0 and momentum 0.9 for a total of 1000 epochs with
BYOL data augmentation using area crop lower bound to be 0.5 and a cosine decay schedule with
a warm-up period of 10 epochs. For the contrastive L/8 experiments, we use a batch size of 2048
and the SGD optimizer with learning rate 4.0 and momentum 0.9 for a total of 1000 epochs with
BYOL data augmentation (Grill et al., 2020) using area crop lower bound to be 0.3 and a cosine
decay schedule with a warm-up period of 10 epochs.

ImageNet. For the supervised experiments, we use a batch size of 256 and the SGD optimizer with
learning rate 0.05 and momentum 0.9 for a total of 120 epochs with BYOL data augmentation (Grill
et al., 2020) using area crop lower bound to be 0.3 and a cosine learning rate decay schedule with a
warm-up period of 10 epochs. For the contrastive experiments, we use a batch size of 2048 and the
LARS optimizer with learning rate 0.1 and momentum 0.9 for a total of 800 epochs with BYOL data
augmentation (Grill et al., 2020) using area crop lower bound to be 0.08 and a cosine learning rate
decay schedule with a warm-up period of 10 epochs.

12 FUSED JVP/VJP DETAILS

In Algorithm 1, we provide a JAX code snippet implementing fused operators for the supervised
cross entropy loss. “Fused” here means that we package several operations into one function. In the
supervised cross entropy loss, we combine average pooling, channel concatenation, a linear classifier
layer, and cross entropy all together. Key steps and expected tensor shapes are annotated in the
comments. The fused InfoNCE loss implementation will be included in our full code release.

13 LOCALMIXER ARCHITECTURE

In Algorithm 2, we provide code in JAX style that implements our proposed LocalMixer architecture.

14 ADDITIONAL RESULTS

In this section we provide additional experimental results.

Normalization scheme. Table 5 compares different normalization schemes. Layer normalization
(LN) is often better than batch normalization (BN) on our mixer architecture. Local LN is better
on contrastive learning experiments and achieves lower error rates using forward gradient learning.
Although in our main paper, backprop were used in normalization layers, backprop is not necessary
for Local LN, c.f . “NG” (No Gradient) columns in Table 5.

Place of normalization. We investigate the places where we add normalization layers. Traditionally,
normalization is added after linear layers. In MLPMixer, LN is added at the beginning of each block.
With our forward gradient learning, it is now a question of which location is the optimal design.
Adding it after the linear layer has the advantage of shaping the activations to be more well behaved,
which can make perturbation learning more effective. Adding it before the linear layer can also help
reduce the variance since the inputs always get multiplied with the gradient of the output activity.
The results are reported in Table 6. Adding normalization both before and after the linear layer
helps forward gradient to achieve lower training errors. While this could result in some overfitting
on supervised learning, it is good for contrastive learning which needs more model capacity. This
is reasonable as forward gradient introduce a lot of variances, and more normalization layers help
achieve better training performance.

28

Published as a conference paper at ICLR 2023

Algorithm 1 Naïve and fused local cross entropy, with custom JVP and VJP operators.

N: batch size; P: num patches; G: num grps; C: num channels; D: channels / grp; K: num cls
x: encoder features [N,P,G,C/G]
w: classifier weights [C,K]; b: classifier bias [K]
labels: class labels [N,K]
import jax
import jax.numpy as jnp
from jax.scipy.special import logsumexp

def naive_avg_group_linear_xent(x, w, b, labels):
N, P, G, _ = x.shape
Average pooling, with stop gradients. [N,P,G,C/G] -> [N,1,G,C/G]
avg_pool_p = jnp.mean(x, axis=1, keepdims=True)
x_div_p = x / float(P)
[N,P,G,C/G]
x = x_div_p + jax.lax.stop_gradient(avg_pool_p - x_div_p)
Concatenate everything, with stop gradients. [N,P,G,C] -> [N,P,G,G,C/G]
x = jnp.tile(jnp.reshape(x, [N, P, 1, G, -1]), [1, 1, G, 1, 1])
mask = jnp.eye(G)[None, None, :, :, None]
x = mask * x + jax.lax.stop_gradient((1.0 - mask) * x)
[N,P,G,G,C/G] -> [N,P,G,C]
x = jnp.reshape(x, [N, P, G, -1])
logits = jnp.einsum(’npgc,cd->npgd’, x, w) + b
logits = logits - logsumexp(logits, axis=-1, keepdims=True)
loss = -jnp.sum(logits * labels[:, None, None, :], axis=-1)
return loss

def fused_avg_group_linear_xent(x, w, b, labels):
This is for forward pass. The numerical value of each local loss should be the same.
So we compute one and replicate it many times.
N, P, G, _ = x.shape
[N,P,G,C/G] -> [N,G,C/G]
x_avg = jnp.mean(x, axis=1)
[N,G,C/G] -> [N,C]
x_grp = jnp.reshape(x_avg, [x_avg.shape[0], -1])
[N,C] -> [N,K]
logits = jnp.einsum(’nc,ck->nk’, x_grp, w) + b
logits = logits - logsumexp(logits, axis=-1, keepdims=True)
loss = -jnp.sum(logits * labels, axis=-1)
Key step: after computing the loss, replicate it for PxG times. [N] -> [N,P,G]
return jnp.tile(jnp.reshape(loss, [N, 1, 1]), [1, P, G])

def fused_avg_group_linear_xent_jvp(primals, tangents):
This JVP operator performs both regular forward pass and the forward autodiff.
x, w, b, labels = primals
dx, dw, db, dlabels = tangents
N, P, G, D = x.shape
dx_avg = dx / float(P)
Reshape the classifier weights, since only one group passes gradient at a time.
w_ = jnp.reshape(w, [G, D, -1])
b = jnp.reshape(b, [-1])
Regular forward pass
[N,P,G,C/G] -> [N,G,C/G]
x_avg = jnp.mean(x, axis=1)
[N,G,C/G] -> [N,C]
x_grp = jnp.reshape(x_avg, [x_avg.shape[0], -1])
[N,C] -> [N,K]
logits = jnp.einsum(’nd,dk->nk’, x_grp, w) + b
logits = logits - logsumexp(logits, axis=-1, keepdims=True)
loss = -jnp.sum(logits * labels, axis=-1)
We can compute the gradient through cross entropy first.
dlogits_bwd = jax.nn.softmax(logits, axis=-1) - labels # [N,K]
Key step: dloss = dx * w * dloss/dlogit + (x * dw + db) * dloss/dlogit
Do the einsum together to avoid replicating outputs.
dloss = jnp.einsum(’npgd,gdk,nk->npg’, dx_avg, w_, dlogits_bwd) + jnp.einsum(’nk,nk->n’,

(jnp.einsum(’nc,ck->nk’, x_grp, dw) + db), dlogits_bwd)[:, None, None] # [N,P,G]
Return loss and loss gradients [N,P,G].
return jnp.tile(jnp.reshape(loss, [N, 1, 1]), [1, P, G]), dloss

def fused_avg_group_linear_xent_vjp(res, g):
This is a fused backprop (VJP) operator.
x, w, logits, labels = res
N, P, G, D = x.shape
x_avg = jnp.mean(x, axis=1)
x_grp = jnp.reshape(x_avg, [x_avg.shape[0], -1])
Key step: only the first patch/group gradients since everything is the same.
g_ = g[:, 0:1, 0]
dlogits = g_ * (jax.nn.softmax(logits, axis=-1) - labels) # [N,K]
Remember to multiply gradients by PG times due to weight sharing.
db = jnp.reshape(jnp.sum(dlogits, axis=[0]), [-1]) * float(P * G)
dw = jnp.reshape(jnp.einsum(’nc,nk->ck’, x_grp, dlogits),

[G * D, -1]) * float(P * G)
Key step: use grouped weights to perform backprop.
dx = jnp.einsum(’nd,gcd->ngc’, dlogits, jnp.reshape(w, [G, C, -1])) / float(P)
Broadcast gradients across patches.
dx = jnp.tile(dx[:, None, :, :], [1, P, 1, 1])
return dx, dw, db, None

29

Published as a conference paper at ICLR 2023

Algorithm 2 A LocalMixer architecture implemented with JAX style code.

import jax
import jax.numpy as jnp

def linear(x, w, b):
"""Linear layer."""
return jnp.einsum(’npc,cd->npd’, x, w) + b

def group_linear(x, w, b):
"""Linear layer with groups."""
return jnp.einsum(’npgc,gcd->npgd’, x, w) + b

def normalize(x, axis=-1, eps=1e-5):
"""Normalization layer."""
mean = jnp.mean(x, axis=axis, keepdims=True)
mean_of_squares = jnp.mean(jnp.square(x), axis=axis, keepdims=True)
var = mean_of_squares - jnp.square(mean)
inv = jax.lax.rsqrt(var + eps)
y = (x - mean) * inv
return y

def block0(x, params):
"""Initial block with only channel mixing."""
N, P, _ = x.shape
G = num_groups
x = normalize(x)
x = linear(x, params[0][0], params[0][1])
x = normalize(x)
x = jax.nn.relu(x)
x = jnp.reshape(x, [N, P, G, -1])
x = normalize(x)
x = group_linear(x, params[1][0], params[1][1])
x = normalize(x)
x = jax.nn.relu(x)
return x

def mlp_block(x, params):
"""Regular MLP block with token & channel mixing."""
N, P, G, _ = x.shape
inputs = x
Token mixing.
x = jnp.reshape(x, [N, P, -1])
x = normalize(x)
x = jnp.swapaxes(x, 1, 2)
x = linear(x, params[0][0], params[0][1])
x = jnp.swapaxes(x, 1, 2)
x = normalize(x)
x = jax.nn.relu(x)

Channel mixing.
x = normalize(x)
x = linear(x, params[1][0], params[1][1])
x = normalize_layer(x)
x = jax.nn.relu(x)
x = jnp.reshape(x, [N, P, G, -1])
x = normalize(x)
x = group_linear(x, params[2][0], params[2][1])
x = normalize(x)
x = x + inputs
x = jax.nn.relu(x)
return x

def local_mixer(x, params):
"""LocalMixer."""
x = preprocess(x, image_mean, image_std, num_patches)
pred_local = [] # Local predictions.
Build network blocks.
for blk in range(num_blocks):

if blk == 0:
x = block0(x, params[f’block_{blk}’])

else:
x = mlp_block(x, params[f’block_{blk}’])

Projector connects to local losses.
x_proj = normalize(x)
pred_local.append(linear(x_proj, params[f’proj_{blk}’][0], params[f’proj_{blk}’][1]))

Disconnect gradients.
x = jax.lax.stop_gradient(x)

x = jnp.reshape(x, [x.shape[0], x.shape[1], -1])
x = jnp.mean(x, axis=1) # [N,C]
x = normalize(x)
pred = linear(x, params[’classifier’][0], params[’classifier’][1])
return pred, pred_local

30

Published as a conference paper at ICLR 2023

Supervised M/8/16 Contrastive M/8/16
BP LG-BP LG-FG-A LG-FG-A (NG) BP LG-BP LG-FG-A LG-FG-A (NG)

BN 30.38 / 0.00 33.41 / 5.41 32.84 / 23.09 33.48 / 20.80 27.56 / 24.39 30.27 / 28.03 35.47 / 32.71 37.41 / 31.52
LN 30.55 / 0.00 33.17 / 7.09 29.03 / 17.63 29.33 / 19.26 23.52 / 20.71 27.41 / 24.73 34.21 / 31.38 36.24 / 34.12

Local LN 32.89 / 0.00 33.84 / 0.05 30.68 / 19.39 30.44 / 17.12 23.24 / 21.03 28.42 / 25.20 32.89 / 31.01 32.25 / 30.17

Table 5: Comparing different normalization schemes. NG=No normalization gradient. CIFAR-10
test / train error (%)

Supervised M/8/16 Contrastive M/8/16
LN BP LG-BP LG-FG-A BP LG-BP LG-FG-A

Begin Block 31.43 / 0.00 34.73 / 1.45 34.89 / 31.11 23.27 / 20.69 25.82 / 22.96 89.93 / 90.71
Before Linear 32.50 / 0.00 34.15 / 0.05 33.88 / 27.94 22.62 / 20.38 NaN / NaN 35.01 / 32.91
After Linear 30.38 / 0.00 29.83 / 0.44 29.35 / 23.19 26.50 / 23.98 28.97 / 26.67 34.10 / 33.18

Before + After Linear 33.62 / 0.00 33.84 / 0.05 30.68 / 19.39 23.24 / 21.03 28.42 / 25.20 32.89 / 31.01

Table 6: Place of LayerNorm on CIFAR-10, test / train error. (%)

Number of Groups

E
rr

or
 R

at
e

(%
)

0

10

20

30

40

1 2 4 8 16 32 64

BP Train

LG-BP Train

LG-FG-A Train

BP Test

LG-BP Test

LG-FG-A Test

(a) CIFAR-10 Supervised M/8/*

Number of Groups

E
rr

or
 R

at
e

(%
)

15

25

35

45

1 2 4 8 16 32 64

BP Train

LG-BP Train

LG-FG-A Train

BP Test

LG-BP Test

LG-FG-A Test

(b) CIFAR-10 Contrastive M/8/*

Figure 9: Effect of groups. For BP algorithms, groups has a minor effect on the final performance,
but for local forward gradient, it significantly reduces the variance and achieves lower error rate on
both training and test sets.

Effect of groups. We provide additional results summarizing the training and test performance of
adding more groups in Figure 9. Backprop and local greedy backprop always achieve zero training
error with increasing number of groups on CIFAR-10 supervised, but adding groups has a significant
benefit lowering training errors for forward gradient. This suggests that the main opponent here is still
the gradient estimation variance, and lowering training errors can generally make test errors lower
too; on the other hand adding groups have negligible effect on backprop. For contrastive learning,
here the task requires higher model capacity, and adding groups effectively reduce the model capacity
by introducing sparsity in the weight matrix. As a result, we observe a slight drop of less than 5%
performance on both backprop and local greedy backprop. By contrast, forward gradient gains over
10% of performance by adding 16 groups.

31

	Introduction
	Related Work
	Forward Gradient Learning
	Forward-mode automatic differentiation (AD)
	Weight-perturbed forward gradient
	Activity-perturbed forward gradient
	Theoretical properties
	Continuous-time rate-based models
	Activation sparsity and normalization functions

	Scaling with Local Losses
	Implementation
	Experiments
	Conclusion
	Proofs of Unbiasedness
	Proofs of Variances
	Numerical Simulation of Variances
	Training Details
	Fused JVP/VJP Details
	LocalMixer Architecture
	Additional Results

