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Abstract
The most common settings in machine learning to study mul-
titask learning assume either that a random task is selected on
each training trial, or that one task is trained to mastery and then
training advances to the next. We study an intermediate setting
in which tasks are interleaved, i.e., training proceeds on task A
for some period of time, switches to another task B before A is
mastered, and continues to alternate. We examine properties of
modern neural net learning algorithms and architectures in this
setting. The networks exhibit effects of task sequence that are
qualitatively similar to established phenomena in human learn-
ing and memory, including: forgetting with relearning savings,
task switching costs, and better memory consolidation with
interleaved training. By improving our understanding of such
properties, one can design learning schedules that are suitable
given the temporal structure of the environment. We illustrate
with a momentum optimizer that resets momentum following
a task switch and leads to reliably better online cumulative
learning accuracy.
Keywords: multitask learning; forgetting; relearning savings;
task switching; interleaved training; weight consolidation

Natural environments demand that we learn to perform a
diverse, unbounded set of tasks. We are challenged by the
fact that we rarely have the opportunity to master one task
before we are called on to perform another. Even when we
achieve mastery, the demands of intervening tasks may lead to
forgetting over time. The general setting of human learning is
quite different than the setting in which machine learning is
typically explored. Most machine-learning research in super-
vised and reinforcement learning focuses on learning a single
task de novo. When multiple tasks are to be learned, the stan-
dard assumption is that training data arrives in episodes, each
consisting of a distinct, novel task and/or input distribution.
Figure 1 depicts this episodic training scenario, contrasted
with the setting more typical of human experience in the nat-
ural world. Machine-learning paradigms that typically adopt
episodic training include few-shot, transfer, continual, incre-
mental, and meta-learning (see Murphy, 2022, Chapter 19).

In this paper, we explore the properties of neural networks
trained in a structured multitask environment where tasks
are interleaved (Marr, 1971; McClelland, McNaughton, &
O’Reilly, 1995). We study the simplest possible scenario:
one involving two tasks that alternate. We evaluate machine
performance continually and online, i.e., each trial is both
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an opportunity for evaluating knowledge and for subsequent
learning, just as it is for people. Our goal is to better un-
derstand the behavior of machine learning by examining the
similarities and differences with human learning. We are not
modeling human data per se; rather, we start by identifying
phenomena in the human literature on multitask learning and
then determine the extent to which a correspondence exists
in machine learning. Discovering properties and phenomena
that had not previously been identified in machine learning
should prove useful for designing online, continual-learning
machines, and may also offer new insights into the mecha-
nisms underlying these phenomena in humans.

Consider catastrophic forgetting, frequently identified as
a fundamental challenge to machine learning (e.g., French,
1999). But is it? People do forget catastrophically. What
enables people to accumulate knowledge is the consolida-
tion of memory (Nadel, Hupbach, Gomez, & Newman-Smith,
2012) and the slowing of forgetting with repeated experience
(Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008; Pavlik & An-
derson, 2005). If machine learning exhibits the same property,
then perhaps the focus on mitigating catastrophic forgetting
in contrived training settings (e.g., Kirkpatrick et al., 2017;
Robins, 1995) is unwarranted; instead, machine-learning re-
search should examine emergent properties of memory in nat-
uralistic settings (Figure 1) and then leverage these properties
to propose mechanisms that supplement the natural resistance
to forgetting in these settings (e.g., Flesch et al., 2018; Sprech-
mann et al., 2018; Russin et al., 2022).

Human Learning With Multiple Tasks
In this section, we discuss three phenomena relating to the
influence of task sequence on human learning.

Forgetting With Relearning Savings
Ebbinghaus (1885/1913) performed the first experimental stud-
ies of learning and memory using himself as a subject. He
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Figure 1: Contrasting the typical setting for machine learning
and the setting for naturalistic human learning.



practiced lists of 12-36 random syllables and recorded the
number of times needed to go through a list in order to recite
it back from memory. He did this over multiple days, and not
surprisingly, from one day to the next he would forget the list
and need to practice it again to achieve mastery. Despite the
forgetting, the time to relearn decreased over successive days.
Thus, forgetting, which is due to both the passage of time and
interference from intervening tasks (Sadeh, Ozubko, Winocur,
& Moscovitch, 2016), does not imply that the learner is back
in the state they were in prior to initial learning. To the best
of our knowledge, this relearning savings with practice has
not been demonstrated for machine learners in the setting of
alternating tasks. Indeed, one might expect neural nets not to
exhibit savings, because once the weights are unlearned there
is no trace of their previous values. However, a hint that net-
works might exhibit savings comes from early work of Hinton
and Sejnowski (1986), who observed that, following damage
to a neural network in the form of weight corruption, retraining
the network was more efficient than the initial training.

Task Switching Cost
Whenever a person switches among tasks, a performance cost
is incurred (Monsell, 2003). The cost can be either in latency
or accuracy, both reflecting some degradation in skill.2 For
example, suppose an individual is presented a series of digits
and is asked to perform one of two tasks: (A) classify the digit
as low (< 5) or high (≥ 5), or (B) classify the digit as odd or
even. In a series of trials ordered as AAAABBBBAAAA ...,
the first trial after a switch is performed more slowly than
the second trial. In deterministic sequences, performance
reaches asymptote on the second trial. For non-deterministic
sequences, performance improves as the run length increases,
up to about 5 trials. Thus, even for simple, highly practiced
tasks, any interruption by another task incurs a performance
cost. The rapid recovery appears to reflect trial-to-trial adapta-
tion of the cognitive architecture (Mozer, Kinoshita, & Shettel,
2007; Wilder et al., 2013), which is rational when operat-
ing in an environment with temporal autocorrelation (Jones &
Sieck, 2003; Yu & Cohen, 2008), even if it results in a cost
when switches occur. The closest analog to this situation in
the machine-learning literature arises in few-shot learning, a
setting in which a new task needs to be learned from a few
examples, e.g., using the in-context window to guide a lan-
guage model to specialize in a new task (Brown et al., 2020).
However, this situation has been studied for novel tasks, not
revisiting previously learned tasks.

Blocked Versus Interleaved Training
When learning new skills, students benefit from interleaved
over blocked practice (e.g., Taylor & Rohrer, 2010; Rohrer,
2012). Interleaved practice refers to a series of problems which
demand many different skills, blocked practice to a series in
which most successive problems require application of the

2In the cognitive modeling literature, output strength from a model
is often related to latency, e.g., the drift-diffusion model of Ratcliff
and McKoon (2008).

same skill. While learners may find blocked practice easier
than interleaved practice—e.g., a set of problems pertaining
to the most recent lesson versus problems drawn randomly
from any preceding lesson—the latter boosts learning gains
and resistance to forgetting on an educationally relevant time
scale (Rohrer, Dedrick, & Stershic, 2015).

As noted earlier, machine-learning research typically stud-
ies blocked training. In the present work, we study varieties
of interleaved training. The closest work to ours in machine
learning involves the use of nonstationary data streams in con-
tinual learning, though the focus has been on covariate shift—a
change of input distribution over time (Cai, Sener, & Koltun,
2021; Lin, Shi, Pathak, & Ramanan, 2022; Ren, Iuzzolino,
Mozer, & Zemel, 2021), rather than a change in how inputs
should be mapped to outputs.

Methodology
We study the simplest possible setting in which multiple tasks
are interleaved during training: a setting involving two distinct,
alternating tasks. As in the natural world, the task sequence
has temporal contiguity such that task repetition are more
common than task switches. The learner is provided with an
explicit signal that specifies the task to be performed. The
learner must process its input in a task-appropriate manner
(similar to Davidson and Mozer, 2020; cf., Flesch, Balaguer,
Dekker, Nili, and Summerfield, 2018, where the task is not
provided and must be inferred from feedback).

In this setting, we investigate the learning behavior of a
generic neural net trained with standard stochastic gradient
descent. Our analyses focus on the properties described in the
previous section: relearning savings, task switching costs, and
blocked versus interleaved training.

In an initial experiment, we use the CIFAR-10 data set, com-
prising images labeled into 10 classes. We randomly partition
the classes into two tasks, A and B , each requiring five-class
discrimination. We assume that all inputs are processed by
a ResNet-50 network (He, Zhang, Ren, & Sun, 2016) with
one output head per task. The task signal is used to determine
which output head to read from. (This architecture maintains
task-conditional class priors, which are distorted by an archi-
tecture with a single output head.) Training on one task will
alter representations in lower layers, which may negatively
impact performance on the other task.

We characterize the training environment in terms of a run
length, ρ. Models are trained on ρ passes through the complete
set of training instances in task A and then a switch is made
to B , alternating every ρ passes. As ρ→ 0, training becomes
much like iid (independent and identically distributed) training,
where a random task is chosen on each training trial. As
ρ→ ∞, training becomes like the standard blocked procedure
in which one task is trained to asymptote and then the next
task is trained to asymptote (see right column of Figure 6).
We investigate an intermediate range of ρ. With any ρ ≥ 1,
the training environment exhibits strong recency effects, i.e.,
Pr(taskt+1 = taskt)� Pr(taskt+1 6= taskt).



(a) CIFAR5 + CIFAR5

(b) CIFAR5 + SVHN

Figure 2: Training in a task-alternation environment with (a) two 5-way CIFAR tasks, (b) a 5-way CIFAR task and a 5-way
SVHN task. Each graph shows accuracy per training batch for the current batch’s task—indicated by color—over the course of
training. Column 1 is the iid environment (ρ = 1/48) and columns 2-5 are for environments with run lengths ρ ∈ {3,6,9,15}.

CIFAR-10 has 50k training instances total, half associated
with each task. We train the model in batches of 512 same-task
instances for implementation efficiency. Batches are generated
at random each pass, with the constraint that examples are not
shown again until all examples of a task have been presented.
There are 48 full training batches per pass, and the fractional
batch remaining is discarded.

The training procedure for each weight update in the model
is meant to be comparable to standard practice in machine
learning, not a correspondence to individual learning trials
for humans. The mismatch would be problematic if we were
claiming to be modeling human behavior, but our goal is
rather to discover new phenomena in deep nets using cognitive
phenomena as a guide.

The task-alternation environment is of course periodic and
completely predictable. Nonetheless, the nets we study have
no means of exploiting the environment’s determinism. For
example, they cannot count the number of batches of a given
task. Our simulations would not benefit from introducing
stochasticity via a semi-Markov process, and doing so would
only increase noise variability and weaken analyses.

Simulation Details
We run 30 replications of each simulation with different weight
initializations, different splits of the 10 classes into tasks A
and B , and different batch compositions. For each class split,
we counterbalance differences in intrinsic task difficulty by
performing run pairs with either A or B leading the sequence.

For the first set of results reported here (Figures 2, 5), we
train with a fixed learning rate of 0.02 and a stochastic gradient

descent (SGD) optimizer without momentum. SGD-without-
momentum is used to avoid the influence of previous batches
on the current batch, despite the fact that resulting performance
is not quite state-of-the-art. However, the results we present
are qualitatively unaffected by the use of fancier optimizers
and learning-rate decay.

Models are trained for exactly 90 passes through all the data
(epochs). Consequently, the total number of training runs of
both tasks combined is 180/ρ, with the number of task alterna-
tions being 180/ρ−1. We explored ρ ∈ {1,2,3,5,6,10,15}.
We consider the two extreme cases as well: an iid condition in
which the task alternates each batch (1/48 of an epoch; with
this granularity, there is essentially no forgetting of one task
while the other is trained), and a blocked condition in which
ρ = 90 and there is exactly one alternation.3

The simulation in Figure 2b uses a different task pair: a
5-way CIFAR-10 discrimination and a 5-way SVHN discrim-
ination. SVHN (Netzer et al., 2011) consists of photos of
house address numerals, which look quite unlike the CIFAR-
10 classes, which are all natural categories, such as animals
and human-made objects.

Results
During training, for each batch we first evaluate model ac-
curacy and then take a gradient step based on that batch.
Figure 2a plots training accuracy as a function of epoch
for an iid environment (left graph) and environments with
ρ ∈ {3,6,10,15}. The two distinct tasks are indicated by

3For reference on terminology: 1 run = ρ epochs; 1 epoch = 48
batches; 1 batch = 512 trials.



Figure 3: For ρ = 3, curves depicting rate of relearning—
accuracy improvement within a run from batch k to batch
k+1—as a function of k. The color coding indicates whether
the training run is early (orange) or late (black) in training.
Runs early in training don’t show rapid relearning following
a task switch, whereas later runs do. The identical pattern is
observed whether we measure absolute increase in accuracy,
as in the Figure, or relative increase in accuracy or relative
decrease in error rate (neither of which is shown).

color. (Though not depicted here, we observe the same quali-
tative pattern for smaller ρ, including ρ < 1.) As run length
increases, the repeated task benefits at the cost of forgetting
when the task switches. These simulations differ only in the
ordering of learning trials; they are controlled for overall fre-
quency of each example and the number of gradient steps
per task. As we will shortly show, evaluation (test) accuracy
mirrors training accuracy.

Figure 2b shows training curves for a pair of less simi-
lar tasks: CIFAR (natural images) and SVHN (photos of
house numbers from street view). The qualitative pattern
of forgetting-and-relearning matches Figure 2a, except that
forgetting and relearning are amplified.

Forgetting and Recovery
Two striking features of Figure 2 are that substantial forgetting
occurs during an intervening task and forgetting increases with
the duration of the intervening task. Neither of these features
is surprising in light of the literature on catastrophic forgetting.
(Not visible from the Figure, but forgetting is exponential
over batches.) A third feature is less obvious: recovery from
forgetting is far quicker than initial learning. This feature is
clear from the hockey-stick shape of the learning curves, where
the recovery to the previous level of performance is quick and
continued learning progresses more slowly. In fact, the rate of
recovery increases with practice, as shown in Figure 3. This
evidence for relearning savings matches the human memory
phenomenon first noted by Ebbinghaus. Relearning savings
indicates latent residual knowledge that can be unmasked by
brief practice.

Task Switching
Does the structure of the environment impact learning effec-
tiveness? Typically in machine learning, effectiveness is mea-

Figure 4: Cumulative mean training accuracy for environments
with various run lengths (ρ) and an iid environment.

sured via accuracy on an evaluation set that is separate from
the training set, but for an online learning agent interacting
with a structured environment, effectiveness is often measured
via prequential evaluation (Haug, Tramountani, & Kasneci,
2022), which in our case simply means that each input is both
an evaluation trial and a learning trial. A prequential evalua-
tion measure reflects the effectiveness of a learner in a given
environment. We use the average prequential accuracy of all
batches earlier in training—or cumulative mean training accu-
racy (CMTA)—as shown in Figure 4 for various run lengths
over the course of training. Because it is a cumulative average,
CMTA at a given time is indicative of historical (not instan-
taneous) performance and can be compared to total reward
obtained by an agent. Environments in which task repetitions
are more likely (i.e., longer run lengths) benefit because there
are fewer task switches. Early trials in a run pay an accuracy
cost, relative to the iid setting, whereas later trials in a run
benefit (Figure 5). One striking feature of Figures 2 and 5 is
that even after significant task expertise has been acquired, a
performance drop and rapid recovery is observed immediately
after a task switch. This drop and recovery arguably mirrors
task-switching costs in human performance, albeit at a very
different time scale.

Interleaved Versus Blocked Practice
The models in Figure 2 are trained for 90 epochs. It is not
self-evident what will occur if training continues indefinitely.
Can a model learn both tasks completely, or will inter-task
interference yield sufficient forgetting that neither task is ever
learned perfectly? Informally, polling our colleagues produces
a roughly 50/50 split prediction. As it turns out, both tasks
are learned, although the amount of training required is more
than the twice the amount that would be required to learn
either task alone. The left and right upper panels of Figure 6
show extended interleaved and blocked training, respectively.
(To reach asymptotic performance faster, this simulation uses
momentum of 0.9 with an optimized learning rate of 0.002.
Qualitative behavior is unchanged without momentum.)

In retrospect, the fact that both tasks can be learned is not
surprising, as long as each task run is long enough to slightly
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Figure 5: Accuracy measured on the current task over the course of each run. The three columns correspond to early, middle, and
late phases of training. The top row shows training accuracy computed for each batch, and the bottom row shows accuracy on an
evaluation set, computed only at the end of a full pass through all examples for the task (a task epoch). Run length is indicated by
color and the iid environment is indicated by the grey horizontal line.
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Figure 6: Extended interleaved and blocked training (left and right columns, respectively). Training accuracy in the first row,
evaluation accuracy in the second row. Interleaved training is with ρ = 15, thus each run consists of roughly 370k training
examples of one task or the other. With interleaved training, both tasks are eventually learned without resulting in overfitting.

improve performance over where the model was at the end of
the previous run of the same task. As the training error drops,
the amount of learning during a run drops, and the interference
on the other task is reduced, allowing both tasks to be learned.

Although training accuracy will reach 100% in the inter-
leaved condition, it is not self-evident how the model will gen-
eralize: is high training accuracy achieved at the expense of
generalization? That is, in order to reduce the error with inter-
leaved training, does the model need to memorize and thereby
overfit the data? The lower-left graph in Figure 6 indicates that
generalization performance continues to improve, although a
small amount of forgetting on the untrained task is apparent,
corresponding to the task-switching phenomenon described
earlier. In contrast, with blocked training—the lower-right
graph—we observe the expected catastrophic forgetting of
task A when training shifts to task B .

Behaviorally, the network exhibits a type of memory consol-
idation with interleaved practice. The network weights find a
way to accommodate both tasks. Essentially, one can think of
the individual synapses in the network as being in one of three

states: (a) driven in the same direction by both tasks, (b) driven
by one task and receiving no gradient signal from the other,
(c) driven in opposite directions by the two tasks. As learn-
ing progresses, weight magnitudes will grow for synapses in
groups (a) and (b), but the synapses in group (c) will be unable
to contribute to the performance of either task. Consequently,
interleaved training will naturally produce a sort of separation
of knowledge about the two tasks, performing each task in a
way that does not interfere with the other, even though it was
not explicitly trained to do so.

Research in machine learning has focused on techniques
to prevent catastrophic interference between tasks by sepa-
rating the knowledge needed to perform each task in the net-
work. Aljundi et al. (2018) propose to learn a parameter for
each synapse that indicates how important it is for previously
learned tasks and to modulate synaptic plasticity for new tasks
based on this parameter. Zenke et al. (2017) propose intelli-
gent synapses that seek a solution to a new task while staying
near the solution for the previous task. Cheung et al. (2019)
propose a method for orthogonalizing weights for different



tasks to prevent interference. Wallingford et al. (2022) adapt a
pretrained model to multiple tasks using task-specific masks
on synaptic plasticity. Our work argues that in the context of
certain training environments, these specialized mechanisms
are unnecessary, and thus it is valuable to place more emphasis
on the nature of the training environment and how it affects
learning. We return to this topic in the next section.

Discussion
This paper explores properties of canonical deep nets when
trained on interleaved task streams. Our work is motivated
by phenomena in the psychological literature, with the aim of
exploring whether qualitative analogs to these phenomena can
be observed in networks. Identifying such properties should al-
low us to better understand—and eventually improve—neural
network learning. We emphasize that cognitive modeling is
not our goal. That is, we are not trying to develop models
that serve as accounts of psychological processes. The time
scale of training in our simulations is orders of magnitude
different than the time scale of human experimental work on
many dimensions, including training batch size, amount of
training required, how much is learned from each trial, etc.
We summarize our results as follows.

• Significant forgetting occurs between tasks, what is clas-
sically referred to as catastrophic forgetting (McCloskey
& Cohen, 1989). Because output heads are separate for
the two tasks, observed interference is due to adaptation of
latent representations in the network.

• Although forgetting can be dramatic when a task switch
occurs, recovery following the switch can be as dramatic.
Relearning savings were first observed by Hinton and Se-
jnowski (1986) in the context of damaged networks. We
show that another sort of corruption—adaptation to task B
on performance of task A—also yields relearning savings.

• Relearning savings increase with practice, consistent with
human memory phenomena (Ebbinghaus, 1885/1913).
However, even after significant expertise has been acquired,
performance drops immediately after a change of task, con-
sistent with the human task-switching literature (Monsell,
2003). Several weight updates are required before the re-
sumed task is performed with full efficacy.

• With extended interleaved training, a type of consolidation
occurs such that knowledge from both tasks becomes less
susceptible to erasure. Related claims have been made
in both the human literature (Rohrer, 2012; Rohrer et al.,
2015) and machine-learning literature (Flesch et al., 2018;
Davidson & Mozer, 2020) that task alternation increases
resistance to forgetting.

• Not surprisingly, online learning performance is sensitive
to the structure of the environment. Controlling for overall
task frequency, performance improves as the probability of
task repetitions increases (Figure 4).

Our investigation points to the importance of the temporal
structure of the environment in determining how networks

learn and retain knowledge. The typical environment in ma-
chine learning is either iid or some artificially blocked setting
such as that shown in Figure 1. Only recently have datasets
been proposed with naturalistic temporal structure. These
datasets include sequences of images obtained while walking
through a physical building (Ren et al., 2021), photos posted
online over the course of a decade (Cai et al., 2021), and evolv-
ing real-world visual concepts such as ‘computer’ (Lin et al.,
2022). Just as human learning and memory appears to be opti-
mized to the structure of natural environments (Anderson &
Schooler, 1991), we might aim to optimize machine learning
methods to the environment in which they operate (Jones et
al., 2023). For instance, if knowledge consolidation occurs for
tasks that are repeatedly practiced as we have shown here, and
if relearning is efficient, forgetting may not be the fundamental
issue it is considered to be in the continual-learning literature.

We close with an illustration of an extremely simple opti-
mizer specific to the task-interleaving environment studied in
this paper. Figure 7 presents batch-wise training accuracy for
ρ = 10. Traces from two alternative learning procedures are
superimposed: a standard momentum optimizer with decay
of 0.9, labeled MOMENTUM (green points), whose hyperpa-
rameters we tuned to the task, and a momentum optimizer
that is sensitive to task switches, MOMENTUM+TBR (blue
points). At a task boundary, MOMENTUM+TBR resets the
momentum state, which prevents continued fine-tuning to the
previous task. As Figure 7 shows, MOMENTUM+TBR yields
less forgetting, as evidenced by lower accuracy for MOMEN-
TUM immediately following a switch, and also a reliable im-
provement in within-run accuracy, as evidenced by the upper
envelope of MOMENTUM+TBR’s learning curve lying above
that of MOMENTUM. Our long-term objective is to devise
more sophisticated learning procedures that are appropriate
given the environment structure.
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Figure 7: Accuracy per training batch as a function of epoch
for ρ = 10, superimposing standard SGD with momentum
(green) versus a variant that is sensitive to the task switch by
resetting momentum (blue).
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