
Online Unsupervised Learning of Visual
Representations and Categories

Mengye Ren MENGYE@NYU.EDU

New York University; Google
Tyler R. Scott TYLERSCO@GOOGLE.COM

Google; University of Colorado, Boulder
Michael L. Iuzzolino MICHAEL.IUZZOLINO@COLORADO.EDU

University of Colorado, Boulder
Michael C. Mozer MCMOZER@GOOGLE.COM

Google; University of Colorado, Boulder
Richard Zemel ZEMEL@CS.COLUMBIA.EDU

Columbia University; University of Toronto; Vector Institute; Canadian Institute for Advanced Research

Abstract

Real world learning scenarios involve a nonstationary distribution of classes with sequential depen-
dencies among the samples, in contrast to the standard machine learning formulation of drawing sam-
ples independently from a fixed, typically uniform distribution. Furthermore, real world interactions
demand learning on-the-fly from few or no class labels. In this work, we propose an unsupervised
model that simultaneously performs online visual representation learning and few-shot learning of
new categories without relying on any class labels. Our model is a prototype-based memory network
with a control component that determines when to form a new class prototype. We formulate it
as an online mixture model, where components are created with only a single new example, and
assignments do not have to be balanced, which permits an approximation to natural imbalanced distri-
butions from uncurated raw data. Learning includes a contrastive loss that encourages different views
of the same image to be assigned to the same prototype. The result is a mechanism that forms cate-
gorical representations of objects in nonstationary environments. Experiments show that our method
can learn from an online stream of visual input data and its learned representations are significantly
better at category recognition compared to state-of-the-art self-supervised learning methods.

1. Introduction

Humans operating in the real world have the opportunity to learn from large quantities of unlabeled
data. However, as an individual moves within and between environments, the stream of experience
has complex temporal dependencies. The goal of our research is to tackle the challenging prob-
lem of online unsupervised representation learning in the setting of environments with naturalistic
structure. We wish to design learning algorithms that facilitate the categorization of objects as
they are encountered and re-encountered. In representation learning, methods are often evaluated
based on their ability to classify from the representation using either supervised linear readout or
unsupervised clustering over the full dataset, both of which are typically done in a separate post-hoc

1

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

evaluation phase. Instead, a key aim of our work is to predict object categories throughout training
and evaluation, where categorization is performed by grouping a new instance with one or more
previous instances, and does not rely on externally provided labels at any stage.

Unsurprisingly, the structure of natural environments contrasts dramatically with the standard
scenario typically assumed by many machine learning algorithms: mini-batches of independent and
identically distributed (iid) samples from a well-curated dataset. In unsupervised visual representation
learning, the most successful methods rely on iid samples. Contrastive-based objectives (Chen et al.,
2020a; He et al., 2020) typically assume that each instance in the mini-batch forms its own instance
class. When this assumption is violated due to autocorrelations in a naturalistic online streaming
setting, contrastive approaches will push same-class instances apart. Clustering-based learning
frameworks (Asano et al., 2020; Caron et al., 2018, 2020) have their own difficulties in environments
with nonstationary and imbalanced class distributions: they assume that the set of cluster centroids
remain relatively stable and that the clusters are balanced in size.

To make progress on the challenge of unsupervised visual representation learning and catego-
rization in a naturalistic setting, we propose the online unsupervised prototypical network (OUPN),
which performs learning of visual representations and object categories simultaneously in a single-
stage process. Class prototypes are created via an online clustering procedure, and a contrastive
loss (Chopra et al., 2005; van den Oord et al., 2018) is used to encourage different views of the same
image to be assigned to the same cluster. Notably, our online clustering procedure is more flexible
relative to other clustering-based representation learning algorithms, such as DeepCluster (Caron
et al., 2018) and SwAV (Caron et al., 2020): OUPN performs learning and inference as an online
Gaussian mixture model, where clusters can be created online with only a single new example,
and cluster assignments do not have to be balanced, which permits an approximation to natural
imbalanced distributions from uncurated raw data.

We train and evaluate our algorithm on a recently proposed naturalistic dataset, Roaming-
Rooms (Ren et al., 2021), which uses imagery collected from a virtual agent walking through
different rooms, and SAYCam (Sullivan et al., 2022), which is collected from head-mounted camera
recordings from human babies. We compare to a suite of state-of-the-art self-supervised representa-
tion learning methods: SimCLR (Chen et al., 2020a), SwAV (Caron et al., 2020), and SimSiam (Chen
and He, 2021). OUPN performs relatively well, as these methods are designed for batches of iid data
and degrade significantly with non-iid streams. But even when we train these methods in an offline
fashion—by shuffling the data to be iid—they underperform OUPN, which handles better the underly-
ing data imbalance and exploits structure in the online temporal streams. In addition, we use Roamin-
gOmniglot (Ren et al., 2021) as a benchmark, and also investigate the effect of imbalanced classes; we
find that OUPN is very robust to an imbalanced distribution of classes. For a version of ImageNet with
non-iid structure, RoamingImageNet, OUPN again outperforms self-supervised learning baselines
when using matched batch sizes. These experiments indicate that OUPN supports the emergence of vi-
sual understanding and category formation of an online agent operating in an embodied environment.

2. Related Work

Self-supervised learning. Self-supervised learning methods discover rich and informative visual
representations without class labels. Instance-based approaches aim to learn invariant representations

2

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

of each image under different transformations (Assran et al., 2021; Chen et al., 2020a; Chen and He,
2021; Chen et al., 2020b; Grill et al., 2020; He et al., 2020; Misra and van der Maaten, 2020; Tian et al.,
2020; van den Oord et al., 2018). They typically work well with iid data and large batch sizes, which
contrasts with realistic learning scenarios. Our method is also related to clustering-based approaches,
which obtain clusters on top of the learned embedding and use the cluster assignments to constrain the
embedding network. To compute the cluster assignment, DeepCluster (Caron et al., 2018; Zhan et al.,
2020) and PCL (Li et al., 2021) use the k-means algorithm whereas SeLa (Asano et al., 2020) and
SwAV (Caron et al., 2020) uses the Sinkhorn-Knopp algorithm (Cuturi, 2013). However, they typi-
cally assume a fixed number of clusters, and Sinkhorn-Knopp further assumes a balanced assignment
as an explicit constraint. In contrast, our online clustering procedure is more flexible: it can create new
clusters on-the-fly with only a single new example and does not assume balanced cluster assignments.
Self-supervised pretraining or joint training has proven beneficial for online continual learning tasks
(Cha et al., 2021; Gallardo et al., 2021; Zhang et al., 2020). There are works that apply self-supervised
learning on datasets that have imbalanced classes with a focus to perform semantic and instance seg-
mentation as downstream tasks (Cho et al., 2021; Hamilton et al., 2022; Hénaff et al., 2021; Van Gans-
beke et al., 2021; Vobecky et al., 2022; Xiong et al., 2021). However, learning is still offline in these
prior works. By contrast, here we aim to perform learning from an online stream of unlabeled images.

Representation learning from video. There has also been a surge of interest in leveraging video
data to learn visual representations (Orhan et al., 2020; Pathak et al., 2017; Wang and Gupta, 2015;
Xiong et al., 2021; Zhu et al., 2020). These approaches all sample video subsequences uniformly
over the entire dataset, whereas our model directly learns from an online stream of data. Our model
also does not have the assumption that inputs must be adjacent frames in the video.

Online and incremental representation learning. Our work is also related to online and continual
representation learning (Castro et al., 2018; Hayes et al., 2020; Javed and White, 2019; Jerfel et al.,
2019; Rao et al., 2019; Rebuffi et al., 2017). Continual mixture models (Jerfel et al., 2019; Rao et al.,
2019) designate a categorical latent variable that can be dynamically allocated for a new environment.
Our model has a similar mixture latent variable setup but one major difference is that we operate on
example-level rather than task-level. Streaming learning (Hayes et al., 2019, 2020) aims to perform
representation learning online. Most work here except Rao et al. (2019) assumes a fully supervised
setting. Our prototype memory also resembles a replay buffer (Buzzega et al., 2020; Kim et al.,
2020), but we store the feature prototypes instead of the inputs.

Latent variable modeling on sequential data. Our model also relates to a family of latent variable
generative models for sequential data (Denton and Fergus, 2018; He et al., 2018; Johnson et al.,
2016; Krishnan et al., 2015; Zhu et al., 2020). Like our model, these approaches aim to infer latent
variables with temporal structure, but they use an input reconstruction criterion.

Online mixture models. Our clustering module is related to the literature on online mixture models,
e.g., Anderson (1991); Bottou and Bengio (1995); Carpenter and Grossberg (1987); Hughes and
Sudderth (2013); Pinto and Engel (2015); Song and Wang (2005). Typically, these are designed
for fast and incremental learning of clusters without having to recompute clustering over the entire
dataset. Despite presenting a similar online clustering algorithm, our goal is to jointly learn both
online clusters and input representations that facilitate future online clustering episodes.

3

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Prototype MemoryFrame + Augmentation

Max
agreement

Net

Net𝑇

Prototype Memory

Cluster 1

Cluster 2

Cluster 3

Net

Net

Net

Nett=1

t=2

t=3

t=4

Online clusteringA B

Figure 1: Our proposed online unsupervised prototypical network (OUPN). A: OUPN learns di-
rectly from an online visual stream. Images are processed by a deep neural network to extract
representations. Representations are stored and clustered in a prototype memory. Similar features are
aggregated in a cluster and new clusters can be dynamically created if the current feature vector is
different from all existing clusters. B: The network learning uses self-supervision that encourages
different augmentations of the same frame to have consistent cluster assignments.

Few-shot learning. Our model can recognize new classes with only one or a few examples. Our
prototype-based memory is also inspired by the Prototypical Network and its variants (Allen et al.,
2019; Ren et al., 2021; Snell et al., 2017). Few-shot methods can reduce or remove reliance on class
labels using semi- and self-supervised learning (Antoniou and Storkey, 2019; Gidaris et al., 2019;
Hsu et al., 2019; Huang et al., 2019; Khodadadeh et al., 2019; Medina et al., 2020; Ren et al., 2018).

Classical few-shot learning, however, relies on episodes of equal number of training and test
examples from a fixed number of new classes. Gidaris and Komodakis (2018); Tao et al. (2020);
Triantafillou et al. (2020); Zhu et al. (2021) consider extending the standard episodes with incremental
learning and varying number of examples and classes. Ren et al. (2021) proposed a new setup that
incrementally accumulates new classes and re-visits old classes over a sequence of inputs. We
evaluate our algorithm on a similar setup; however, unlike that work, our proposed algorithm does
not rely on any class labels.

Human category learning. Our work is related to human learning settings and online clustering
models from cognitive science (Anderson, 1991; Carpenter and Grossberg, 1987; Fisher et al., 1991;
Lake et al., 2009; Love et al., 2004; Murphy, 2004). These models assume a known, fixed represen-
tation of inputs. In contrast, our model learns both representations and categories in an end-to-end
fashion.

3. Online Unsupervised Prototypical Networks

We now introduce our model, online unsupervised prototypical networks (OUPN), which operates in
a streaming categorization setting. At each time step t, OUPN receives an input xt and predicts both
a categorical variable ŷt that indicates the object class and also a binary variable ût that indicates
whether the class is known (u = 0) or new (u = 1). OUPN uses a network h to encode the input to
obtain embedding zt = h(xt; θ), where θ represents the learnable parameters of the encoder network.

4

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

We first describe the inference procedure to cluster embeddings obtained by a fixed θ using an
online probabilistic mixture model. Next, we propose a multi-component loss for representation
learning in our setting which allows θ to be learned from scratch in the course of online clustering.

3.1. Inference

We formulate our clustering inference procedure in terms of a probabilistic mixture model, where
each cluster corresponds to a Gaussian distribution f(z;p, σ2), with mean p, a constant isotropic
variance σ2 shared across all clusters, and mixture weights w: p(z;P) =

∑
k wkf(z;pk, σ

2).
Throughout a sequence, the number of components evolves as the model makes an online decision
of when to create a new cluster or remove an old one. We assume that the prior distribution for the
Bernoulli variable u is constant—u0 ≡ Pr(u = 1))—and the prior for a new cluster is uniform over
the entire space—z0 ≡ Pr(z|u = 1) (Lathuilière et al., 2018). In the following, we characterize
inference as an approximate extension of the EM algorithm to a streaming setting. The full derivation
is included in Appendix A.

3.1.1. E-STEP

Upon seeing the current input zt, the online clustering procedure needs to predict the cluster
assignment or initiate a new cluster in the E-step.

Inferring cluster assignments. The categorical variable ŷ infers the cluster assignment of the
current input example with regard to the existing clusters.

ŷt,k = Pr(yt = k|zt, u = 0) =
Pr(zt|yt = k, u = 0)Pr(yt = k)

Pr(zt, u = 0)
(1)

=
wkf(zt;pt,k, σ

2)∑
k′ wk′f(zt;pt,k′ , σ2)

= softmax

(
logwk −

1

τ
d(zt,pt,k)

)
, (2)

where wk is the mixing coefficient of cluster k, d(·, ·) is the distance function, and τ is an independent
learnable temperature parameter that is related to the cluster variance.

Inference on unknown classes. The binary variable û estimates the probability that the current
input belongs to a new cluster:

ût = Pr(ut = 1|zt) (3)

=
z0u0

z0u0 +
∑

k wkf(zt;pt,k, σ2)(1− u0)
(4)

≥ z0u0
z0u0 +maxk f(zt;pt,k, σ2)(1− u0)

(5)

= sigmoid((min
k

1

τ
d(zt,pt,k)− β)/γ), (6)

where β and γ are separate learnable parameters related to z0 and u0, allowing us to predict different
confidence levels for unknown and known classes.

5

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

3.1.2. M-STEP

Here we infer the posterior distribution of the cluster centroids Pr(pt,k|z1:t). We formulate an
efficient recursive online update, similar to Kalman filtering, incorporating the evidence of the current
input zt and avoiding re-clustering the entire input history. We define p̂t,k as the posterior estimate
of the mean of the k-th cluster at time step t, and ĉt,k is the estimate of the inverse variance.

Updating centroids. Suppose that in the E-step we have determined that yt = k. Then the posterior
distribution of the k-th cluster after observing zt is:

Pr(pt,k|z1:t, yt = k) ∝ Pr(zt|pt,k, yt = k) Pr(pt,k|z1:t−1)

≈ f(zt;pt,k, σ
2)

∫
p′
f(pt,k;p

′, σ2
t,d)f(p

′; p̂t−1,k, σ̂
2
t−1,k)

= f(zt;pt,k, σ
2)f(pt,k; p̂t−1,k, σ

2
t,d + σ̂2

t−1,k).

The transition probability distribution Pr(pt,k|pt−1,k) is a zero-mean Gaussian with variance σ̂2
t,d =

(1/ρ−1)σ̂2
t−1,k, where ρ ∈ (0, 1] is some constant that we define to be the memory decay coefficient.

Since the representations are learnable, we assume that σ2 = 1, and the memory update equation can
be formulated as follows:

ĉt,k = E
yt
[ĉt,k|yt] = ρĉt−1,k + ŷt,k(1− ût,k); (7)

p̂t,k = E
yt
[p̂t,k|yt] = zt

ŷt,k(1− ût,k)

ρĉt−1,k + 1
+ p̂t−1,k

(
1−

ŷt,k(1− ût,k)

ρĉt−1,k + 1

)
; (8)

ŵt,k = E
yt
[ŵt,k|yt] = ĉt,k/

∑
l

ĉt,l, (9)

where ĉ ≡ 1/σ̂2
t,k, which can be viewed a count variable for the number of elements in each estimated

cluster, subject to the decay factor ρ over time.

Adding and removing clusters. At any point in time, the mixture model is described by a collection
of tuples (p̂k, ĉk). We convert the probability of whether an observation belongs to a new cluster
into a decision: if ût exceeds a threshold α, we create a new cluster. Due to the decay factor ρ, our ĉ
estimate of a cluster can decay to zero over time, which is appropriate for modeling nonstationary
environments. In practice, we keep a maximum number of K clusters, and once the limit is reached,
we simply pop out the weakest pk′ , where k′ = argmin(ŵk): Pt = Pt−1 \ {(p̂k′ , ĉk′)} ∪ {(zt, 1)}.

Relation to Online ProtoNet. The formulation of our streaming EM-like algorithm is similar to
the Online ProtoNet (Ren et al., 2021), with several key differences. First, to handle nonstationary
mixtures, we incorporate a decay term which is related to the variance of the transition probability.
Second, our new cluster creation is unsupervised, whereas in (Ren et al., 2021), only labeled examples
lead to new clusters. Third, representation learning in (Ren et al., 2021) relies on a supervised loss,
whereas our objective—described in the next section—is entirely unsupervised. Nonetheless, to
indicate the lineage of our model, OUPN, we refer to the cluster centroids as prototypes and the
mixture model as a prototype memory.

6

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

3.2. Learning

A primary goal of our learning algorithm is to learn good visual representations through this online
clustering process. We start the learning from scratch: the encoder network is randomly initialized,
and the prototype memory will produce more accurate class predictions as the representations become
more informative throughout learning. Our overall representation learning objective has three terms:

L = Lself + λentLent + λnewLnew. (10)

This loss function drives the learning of the main network parameters θ, as well as other learnable
control parameters β, γ, and τ . We explain each term in detail below.

1. Self-supervised loss (Lself): Inspired by recent self-supervised representation learning approaches,
we apply augmentations on xt, and encourage the clustering assignments to match across different
views. Self-supervision follows three steps: First, the model makes a prediction on the augmented
view, and obtains ŷ and û (E-step). Secondly, it updates the prototype memory according to the
prediction (M-step). To create a learning target, we query the original view again, and obtain ỹ to
supervise the cluster assignment of the augmented view, ŷ′, as in distillation (Hinton et al., 2015).

Lself =
1

T

∑
t

−ỹt log ŷ′t. (11)

Note that both ỹt and ŷ′t are produced after the M-step so we can exclude the “unknown” class in
the representation learning objective. We here introduce a separate temperature parameter τ̃ to
control the entropy of the mixture assignment ỹt.

2. Entropy loss (Lent): In order to encourage more confident predictions we introduce a loss
function Lent that controls the entropy of the original prediction ŷ, produced in the initial E-step:

Lent =
1

T

∑
t

−ŷt log ŷt. (12)

3. New cluster loss (Lnew): Lastly, our learning formulation also includes a loss for initiating new
clusters Lnew. We define it to be a Beta prior on the expected û, and we introduce a hyperparameter
µ to control the expected number of clusters:

Lnew = − log Pr(E[û]). (13)

This acts as a regularizer on the total number of prototypes: if the system is too aggressive
in creating prototypes, then it does not learn to merge instances of the same class; if it is too
conservative, the representations can collapse to a trivial solution.

While there are several hyperparameters involved in inference and learning, in our experiments we
only optimize a few: the Beta mean µ, the threshold α, the memory decay ρ, and the two loss term
coefficients. The others are set to default values for all datasets and experiments. See Appendix B for
a complete discussion of hyperparameters.

7

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Full algorithm. Let Θ = {θ, β, γ, τ} denote the union of the learnable parameters. Algorithm 1
outlines our proposed learning algorithm. The full list of hyperparameters are included in Appendix B.

Algorithm 1 Online Unsupervised Prototypical Learning
repeat
Lself ← 0, pnew ← 0.
for t← 1 . . . T do

Observe new input xt.
Encode input, zt ← h(xt; θ).
Compare to existing prototypes: [ût, ŷt]← E-step(zt, P ;β, γ, τ).
if û0t < α then

Assign zt to existing prototypes: P ← M-step(zt, P, ût, ŷt).
else

Recycle the least used prototype if P is full.
Create a new prototype P ← P ∪ {(zt, 1)}.

end if
Compute pseudo-labels: [_, ỹt]← E-step(zt, P ;β, γ, τ̃).
Augment a view: x′

t ← augment(xt).
Encode the augmented view: z′t ← h(x′

t; θ).
Compare the augmented view to existing prototypes: [_, ŷ′t]← E-step(z′t, P ;β, γ, τ).
Compute the self-supervision loss: Lself ← Lself − 1

T ỹt log ŷ
′
t.

Compute the entropy loss: Lent ← Lent − 1
T ŷt log ŷt.

Compute the average probability of creating new prototypes, pnew ← pnew + 1
T ût.

end for
Compute the new cluster loss: Lnew ← − log Pr(pnew).
Sum up losses: L ← Lself + λentLent + λnewLnew.
Update parameters: Θ← optimize(L,Θ).

until convergence
return Θ

It is worth noting that if we create a new prototype every time step, then OUPN is similar to a
standard contrastive learning with an instance-based InfoNCE loss (Chen et al., 2020a; He et al.,
2020); therefore it can be viewed as a generalization of this approach. Additionally, all the losses can
be computed online without having to store any examples beyond the collection of prototypes.

Practical implementation. In practice, we make the following implementation choices. First,
we use cosine similarity instead of negative squared Euclidean distance for computing the mixture
logits, because cosine similarity is bounded and is found to be more stable to train. Second, when we
perform cluster inference, we treat the mixing coefficients wk as constant and uniform as otherwise
we find that the representations may collapse into a single large cluster.

8

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Appliance 402 Appliance 402 Appliance 402Appliance 434Chair 324 Table 320 Picture 457 Picture 457

Figure 2: An example subsequence of the RoamingRooms dataset (Ren et al., 2021), consisting of
glimpses of an agent roaming in an indoor environment, and the task is to recognize object instances.

4. Experiments

In this section, we evaluate our proposed learning algorithm on a set of visual learning tasks and
examine the quality of the output categories. Contrasting with prior work on visual representation
learning, our primary scenario of interest is online training with non-iid image sequences.

Online clustering evaluation. During evaluation we present our model a sequence of all new
images (unlabeled or labeled) and we would like to see how well it produces a successful grouping of
novel inputs. The class label index starts from zero for each sequence, and the classes do not overlap
with the training set. The model memory is reset at the beginning of each sequence.

In unsupervised readout, the model directly predicts the label for each image, i.e. the model g
directly predicts ŷt = g(x1:t). In supervised readout (for evaluation only), the model has access to all
labels up to time step t− 1, and needs to predict the label for the t-th image, i.e. ŷt = g(x1:t, y1:t−1).
We used the following metrics to evaluate the quality of the grouping of test sequences:

• Adjusted mutual information (AMI): In the unsupervised setting, we use the mutual information
metric to evaluate the similarity between our prediction {ŷ1, . . . , ŷT } the groundtruth class ID
{y1, . . . , yT }. Since the online greedy clustering method admits a threshold parameter α to control
the number of output clusters, therefore for each model we sweep the value of α to maximize
the AMI score, to make the score threshold-invariant: AMImax = maxα AMI(y, ŷ(α)). The
maximization of α can be thought of as part of the readout procedure, and it is designed to
particularly help other self-supervised learning baselines since their feature similarity functions are
not necessarily calibrated for clustering.

• Average precision (AP): In the supervised setting, we followed the evaluation procedure in Ren
et al. (2021) and used average precision, which combines both accuracy for predicting known
classes as well as unknown ones.

Offline readout evaluation. A popular protocol to evaluate self-supervised representation learning
is to use a classifier trained offline on top of the representations to perform semantic class readout.
Because AMI and AP are designed to evaluate novel instance classification, we included offline
evaluation protocols for semantic classes. We considered the following classifiers:

• Nearest neighbor readout: A common protocol is to use a k-nearest-neighbor classifier to readout
the learned representations. For RoamingRooms we set k = 39 and for SAYCam we set k = 1,
selected based on validation performance. The difference in k is likely because in SAYCam

9

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Figure 3: An example subsequence of the SAYCam dataset (Sullivan et al., 2022), consisting of
egocentric videos collected from human babies.

AMI AP Acc. Acc.
(k-NN,%) (Linear,%)

Supervised

Supervised CNN - - 72.11 71.93
Online ProtoNet (Ren et al., 2021) 79.02 89.94 - -

Unsupervised

Random Network 28.25 11.68 28.84 26.73
SimCLR (Chen et al., 2020a) 50.03 52.98 44.84 48.83
MoCo-V2 (Chen et al., 2020b) 50.39 64.98 46.81 49.02
SwAV (Caron et al., 2020) 42.70 37.31 40.04 45.77
SwAV+Queue (Caron et al., 2020) 48.31 50.40 43.63 45.31
SimSiam (Chen and He, 2021) 47.58 44.15 43.99 48.24
OUPN (Ours) 78.16 84.86 48.37 52.28

Table 1: Instance and semantic class recognition results
on RoamingRooms

Random split Acc. 1-NN Linear

ImageNet 72.67 53.23
TC-S (Orhan et al., 2020) (iid) 80.76 62.36

Random 10.04 9.37
SimSiam 26.53 19.91
SwAV 34.48 31.99
SimCLR 49.13 37.23
MoCo-V2 53.45 36.12
OUPN (Ours) 64.35 44.29

Subsample 10x Acc. 1-NN Linear

ImageNet 48.09 40.61
TC-S (Orhan et al., 2020) (iid) 60.43 50.16

Random 9.74 15.15
SimSiam 18.71 17.39
SwAV 21.90 19.89
SimCLR 28.24 25.98
MoCo-V2 30.18 25.97
OUPN (Ours) 36.52 30.25

Table 2: Semantic classification results
on SAYCam (Child S)

the training clips overlap with test clips, whereas in RoamingRooms there is a larger difference
between training and testing environments.

• Linear readout: Another popular protocol is to train a linear classifier on top of the learned
representations to a given set of semantic classes. For RoamingRooms, we used the Adam
optimizer with learning rate 10−3 for 20 epochs, and for SAYCam, we used the SGD optimizer
with learning rate searched among {1.0, 0.1, 0.01} for each model for 100 epochs.

Competitive methods. Our focus is online unsupervised visual representation learning. There
are very few existing methods developed for this setting. To the best of our knowledge, continual
unsupervised learning (Rao et al., 2019) (CURL) is the only directly comparable work, but this
method relies on input reconstruction and scales poorly to more general environments. We include
the comparison to CURL in the Appendix (Table 11). Unsupervised few-shot learning approaches
are also related (Khodadadeh et al., 2019; Medina et al., 2020), but these methods are directly related
to standard self-supervised learning methods. Therefore we compare OUPN with the following
competitive self-supervised visual representation learning methods.

• SimCLR (Chen et al., 2020a) is a contrastive learning method with an instance-based objective that
tries to classify an image instance among other augmented views of the same batch of instances.
It relies on a large batch size and is often trained on well-curated datasets such as ImageNet (Deng
et al., 2009).

10

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

40

50

60

70

80

50 20
0

AM
I

Sequence
Length

Unsup.
Instance
Cluster

Ours

SimCLR

SwAV

SwAV +Q

SimSiam

40

50

60

70

80

50 100 200 400

AM
I

Sequence Length

Unsup. Instance Cluster

35

45

55

65

75

85

50 100 200 400

AP

Sequence Length

Supervised Instance Cluster

38

43

48

53

50 100 200 400

Ac
c

(%
)

Sequence Length

Nearest Neighbor Readout

45

50

55

50 100 200 400

Ac
c

(%
)

Sequence Length

Linear Readout

Figure 4: Comparison to SimCLR, SwAV, and SimSiam with larger batch sizes on RoamingRooms

• MoCo (He et al., 2020) is a contrastive learning method with an instance-based objective. It main-
tains a large representation queue to provide negative samples. The parameters of the queue encoder
are momentum averaged. We have a similar mechanism as MoCo by having a queue of representa-
tions; however, we store and accumulate prototypes rather than individual frames. In this paper, we
implement the V2 version of the algorithm (Chen et al., 2020b), and the queue size is set to 2400.

• SwAV (Caron et al., 2020) is a contrastive learning method with a clustering-based objective. It has
a stronger performance than SimCLR on ImageNet. The clustering is achieved through Sinkhorn-
Knopp which assumes balanced assignment, and prototypes are learned by gradient descent.

• SwAV+Queue is a SwAV variant with an additional example queue. This setup is proposed
in Caron et al. (2020) to deal with small training batches. A feature queue that accumulates
instances across batches allows the clustering process to access more data points. The queue size
is set to 2000.

• SimSiam (Chen and He, 2021) is a self-supervised learning method that does not require negative
samples. It uses a stop-gradient mechanism and a predictor network to make sure the representa-
tions do not collapse. Through not using negative samples, SimSiam could be immune to treating
images of the same instances as negative samples.

For fair comparison on online representation learning, all of the above methods are trained on the
same dataset using the same input data as our model, instead of using their pretrained checkpoints
from ImageNet.

Since none of these competitive methods are designed to output classes with a few examples,
we need an additional clustering-based readout procedure to compute AMI and AP scores. We use
a simple online greedy clustering procedure for these methods. For each timestep, it searches for
the closest prototype; in unsupervised mode, if it fails with ût greater than α, it will create a new
prototype, and otherwise it will aggregate the current embedding to the cluster centroid. As explained
above, the α parameter is maximized for each model on its test scores to optimize performance.

4.1. Indoor home environments

We first evaluate the algorithm using the RoamingRooms dataset (Ren et al., 2021) where the images
are collected from indoor environments (Chang et al., 2017) using a random walking agent. The

11

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

dataset contains 1.22M image frames and 7K instance classes from 6.9K random walk episodes.
Each image is resized to 120× 160× 3. We use a maximum of 50 frames for training due to memory
constraints, and all methods are evaluated on the test set with a maximum of 100 frames per episode.
The input for each frame is the RGB values and a object segmentation mask (in the 4th channel); the
output (used here only for evaluation with AP and AMI) is the object instance ID. An example episode
is shown in Fig. 2. The dataset is split into different home environments (60 training, 10 val, and
20 test). Each training iteration consists of a sequence of images from one of the homes. At test time,
for the instance classification task, we ask the model to recognize novel objects in a new sequence
of images in one of the test homes. For the semantic classification task, we ask the model to classify
among 21 semantic categories including “picture”, “chair”, “lighting”, “cushion”, “table”, etc.

SimCLR, SwAV and SimSiam use varying batch sizes (50, 100, 200, and 400). For online
(non-iid) settings, the notion of batch size can be understood as “sequence length”. Other training
parameters can be found in the Appendix. Note that all baselines use the same training inputs as our
model.

Implementation details. We use a ResNet-12 (Oreshkin et al., 2018) as the encoder network, and
we train our method over 80k 50-frame episodes (4M image frames total), using a single NVIDIA
1080-Ti GPU. We follow the same procedure of image augmentation as SimCLR (Chen et al., 2020a).
We use 150 prototypes with ρ = 0.995. More implementation details can be found in Appendix B.

Results. Our main results are shown in Table 1. Although self-supervised methods, such as
SimCLR, SwAV and SimSiam, have shown promising results on large batch learning on ImageNet,
their performance here are relatively weak compared to the supervised baseline. In contrast, our
method OUPN shows impressive performance on this benchmark: it almost matches the supervised
learner in AMI, and reached almost 95% of the performance of the supervised learner in AP. OUPN
also outperforms other methods in terms of k-NN and linear readout accuracy. We hypothesize
that the nonstationary distribution of online frames could impose several challenges to standard
self-supervised learning methods. First, SimCLR could treat adjacent similar frames as negative
pairs. Second, it breaks SwAV’s assumption on balanced cluster assignment and stationary cluster
centroids. Adding a queue slightly improves SwAV; however, since the examples in the queue cannot
be used to compute gradients, the nonstationary distribution still hampers gradient updates. Lastly,
all of them could suffer from a very small batch size in our online setting.

To illustrate the impact of our small batch episodes, we increase the batch size for SimCLR
and SwAV, from 50 to 400, at the cost of using multiple GPUs training in parallel. The results are
shown in Fig. 4. Results indicate that increasing the batch size can improve these baselines, which
matches our expectation. Nevertheless, our method using a batch size of 50 is still able to outperform
other self-supervised methods using a batch size of 400, which takes 8× computational resource
compared to ours. Note that the large batch experiments are designed to provide the best setting
for other self-supervised methods to succeed. We do not need to run our model with larger batch
size since our prototype memory is a sequential module, and keeping the batch size smaller allows
quicker online adaptation and less memory consumption.

Comparison to iid modes of SimCLR, SwAV, and SimSiam. The original SimCLR, SwAV, and
SimSiam were designed to train on iid data. To study the effects of this assumption, we implemented

12

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

40

50

60

70

80

50 20
0

AM
I

Sequence
Length

Unsup.
Instance
Cluster

Ours

SimCLR

SwAV

SwAV +Q

SimSiam

40

50

60

70

80

50 100 200 400

AM
I

Batch Size

Unsup. Instance Cluster

35

45

55

65

75

85

50 100 200 400

AP

Batch Size

Supervised Instance Cluster

40

45

50

55

50 100 200 400

Ac
c

(%
)

Batch Size

Nearest Neighbor Readout

47

52

57

62

50 100 200 400

Ac
c

(%
)

Batch Size

Linear Readout

Figure 5: Comparison to iid-trained versions of SimCLR, SwAV, and SimSiam on RoamingRooms.

Query Top-9 Retrieval Across 5000 Images (100 episodes)

Recall: 1.00

Recall: 0.67

Recall: 1.00

Recall: 0.27

Recall: 0.18

Missed Examples

Figure 6: Image retrieval results on RoamingRooms. In each row, the leftmost image is the query
image, and retrieved images are shown to its right. Cosine similarity scores on the top left; a green
border denotes a correct retrieval, red false positive, and yellow a miss. Recall is the proportion of
instances in the top-9.

an approximation to an iid distribution by using a large random queue that shuffles the image frames.
As in the study shown in Fig. 5, we again vary the batch size for these competitive methods. All
of these self-supervised baselines thrive with iid data; the gains of iid over non-iid can be seen by
comparing Fig. 5 to Fig. 4. Larger batches help both methods again here. Interestingly, our method
using a batch size of 50 non-iid data again outperforms both methods using a batch size of 400 of
iid data in terms of AMI and AP. The only case where our method is inferior to SimCLR is when
SimCLR is trained with large batches under iid setting on semantic classification readout. This is rea-
sonable since semantic classification and iid large batch training is the setting SimCLR was originally
developed for. Again, iid large batch training is not what we aim to solve in this paper, and we include
the iid experiments in the paper simply to better understand the failure points of existing algorithms.

Visualization on image retrieval. To verify the usefulness of the learned representation, we ran an
image retrieval visualization using the first 5000 images in the first 100 test sequences of length 50
and perform retrieval in a leave-one-out procedure. This procedure is only to visualize the similarity
and is distinct from our evaluation procedure that requires class-label prediction.The results are
shown in Fig. 6. Similarity scores are also provided. The top retrieved images are all from the same
instance of the query image, and our model sometimes achieves perfect recall. This confirms that our

13

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

model can handle a certain amount of view angle change. We also investigated the missed examples
and we found that these are taken from more distinct view angles.

4.2. Head mounted camera recordings

Inspired by how humans acquire visual understanding ability after birth, we further evaluated our
method on realistic first-person videos collected using baby egocentric cameras. The SAYCam
dataset (Sullivan et al., 2022) is collected using 500 hours video data from three children. We
obtained permission to use from the original authors. Following prior work (Orhan et al., 2020), we
focused on using the Child S subset in our work. See Figure 3 for an example subsequence. We used
MobileNet-V2 for this experiment. We sampled the video at 4 seconds per frame to form a temporal
window of 5 minutes (75 images) for each mini-batch. The inputs are cropped and reshaped into
224 × 224 RGB images. We repeat the full 164-hour video for 16 times (16 epochs) for a total of
2624 hours for all methods trained on this dataset.

To evaluate the learned representations, Orhan et al. (2020) used a labeled dataset of the images
containing 26 semantic classes such as ball, basket, car, chair, etc. Following their settings, we used
two different splits of the dataset: a random iid split and a subsampled split, which was proposed
to reduce the proportion of redundant images. We used both a linear and a nearest neighbor readout.

Results. Results are shown in Table 2. We are able to outperform competitive self-supervised learn-
ing methods. We also reproduced the performance of the temporal classification (TC) model (Orhan
et al., 2020) and an ImageNet pretrained model for comparison. Since the TC model is trained using
random iid samples of the full video, therefore it is understandable that our online streaming model
performs worse. We also note that nearest neighbor readout generally performs better than linear
readout on this benchmark, likely due to the existence of many similar frames in the video.

4.3. Handwritten characters and ImageNet images

We also evaluated our method on two different tasks: recognizing novel handwritten characters
from Omniglot (Lake et al., 2015) and novel ImageNet classes. Here, images are static and are not
organized in a video-like sequence, and models have to reason more about conceptual similarity
between images to learn grouping. Furthermore, since this is a more controllable setup, we can test
our hypothesis concerning sensitivity to class imbalance by performing manipulations on the episode
distribution.

RoamingOmniglot RoamingImageNet
AMI AP AMI AP

Supervised

Pretrain-Supervised 84.48 93.83 29.44 24.39
Online ProtoNet (Ren et al., 2021) 89.64 92.58 29.73 25.38

Unsupervised

Random Network 17.66 17.01 4.55 2.65
SimCLR (Chen et al., 2020a) 59.06 73.50 6.87 12.25
MoCo-V2 (Chen et al., 2020b) 50.38 65.17 7.00 12.25
SwAV (Caron et al., 2020) 62.09 75.93 9.87 5.23
SwAV+Queue (Caron et al., 2020) 67.25 81.96 10.61 4.83
SimSiam (Chen and He, 2021) 45.57 56.12 12.64 6.31
OUPN (Ours) 84.42 92.84 19.03 15.05

Table 3: RoamingOmniglot and RoamingImageNet

Our episodes are sampled from the
RoamingOmniglot and RoamingImageNet
dataset (Ren et al., 2021). An episode in-
volves several different contexts, each con-
sisting of a set of classes, and in each context,
classes are sampled from a Chinese restaurant
process. We use 150-frame episodes with 5
contexts for RoamingOmniglot and 48-frame
with 3 contexts for RoamingImageNet.

14

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Re
la

tiv
e

Pe
rf

or
m

an
ce

Distractor class proportion (digit 0-9)

SimCLR-iid SwAV-iid OUPN (Ours)

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Re
la

tiv
e

Pe
rf

or
m

an
ce

Distractor class proportion (digit 1 only)

SimCLR-iid SwAV-iid OUPN (Ours)
Figure 7: Robustness to imbal-
anced distributions by adding dis-
tractors (Omniglot mixed with
MNIST images). Performance is
relative to the original and a ran-
dom baseline.

Results. The results are reported in Table 3.
In both datasets, our method outperforms self-supervised baselines using the same batch size setting.
In RoamingOmniglot, our model is able to significantly reduce the gap between supervised and
unsupervised models, however in RoamingImageNet the gap is still wide, which suggests that our
model is still less effective handling more distinct images of the same semantic class in the online
stream.

Effect of imbalanced distribution. To achieve a better understanding of why OUPN performs
better than other instance- and clustering-based self-supervised learning methods, here we study the
effect of imbalanced cluster sizes by manipulating the class distribution in the training episodes. In
the first setting, we randomly replace Omniglot images with MNIST digits, with probability from 0%
to 100%. For example, at 50% rate, an MNIST digit is over 300 times more likely to appear compared
to any Omniglot character class, so the episodes are composed of half frequent classes and half
infrequent classes. In the second setting, we randomly replace Omniglot images with MNIST digit 1
images, which makes the imbalance even greater. We compared our method to SimCLR and SwAV in
the iid setup, since this is the scenario they were designed for. Results of the two settings are shown in
Fig. 7, and our method is shown to be more robust under imbalanced distribution than SimCLR and
SwAV. Compared to clustering-based methods like SwAV, our prototypes can be dynamically created
and updated with no constraints on the number of elements per cluster. Compared to instance-based
methods like SimCLR, our prototypes sample the contrastive pairs more equally in terms of represen-
tation similarity. We hypothesize that these model aspects contribute to the differences in robustness.

Ablation studies and hyperparameter optimization. We study the effect of certain hyperparam-
eters of our model. In Table 4, we investigate the effect of the size of the prototype memory, and
whether the model would benefit from a larger memory. It turns out that as long as the size of the
memory is larger than the length of the input sequence for each gradient update step, it can learn good
representations and the size is not a major determining factor. In Table 5, we examine whether the
memory forgetting parameter is important to the model. We found that the forgetting rate between
0.99 and 0.995 is the best. 0.999 (closer to no forgetting) results in worse performance. In Table 6,
we investigate the effect of various values for the new cluster loss coefficient. The optimal value is
between 0.5 and 1.0. More studies on the effect of α, τ̃ , λent and the Beta mean µ are included in
Appendix C.2.

15

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Table 4: Effect of mem. size K

RoamingOmniglot RoamingRooms
K AMI AP AMI AP

50 89.19 95.12 75.33 82.42
100 90.54 95.83 76.70 83.51
150 90.24 95.92 77.07 84.00
200 90.36 95.68 76.81 84.45
250 89.87 95.69 77.83 84.33

Table 5: Effect of decay rate ρ

RoamingOmniglot RoamingRooms
ρ AMI AP AMI AP

0.9 51.12 64.19 65.07 75.50
0.95 79.78 89.30 74.33 81.92
0.99 89.43 95.54 76.97 84.05
0.995 90.80 95.90 77.78 85.02
0.999 86.27 93.69 38.89 39.37

Table 6: Effect of λnew

RoamingOmniglot RoamingRooms
λnew AMI AP AMI AP

0.0 38.26 93.40 19.49 73.93
0.1 86.60 93.50 67.25 71.69
0.5 89.89 95.28 78.04 84.85
1.0 90.06 95.81 77.59 84.36
2.0 88.74 95.73 77.62 84.72

5. Conclusion

Our goal is to develop learning procedures for real-world agents who operate online and in structured,
nonstationary environments. Toward this goal, we develop an online unsupervised algorithm for
discovering visual representations and categories. Unlike standard self-supervised learning, our
algorithm embeds category formation in a probabilistic clustering module that is jointly learned
with the representation encoder. Our clustering is more flexible and supports learning of new
categories with very few examples. At the same time, we leverage self-supervised learning to acquire
semantically meaningful representations. Our method is evaluated in both synthetic and realistic
image sequences and it outperforms state-of-the-art self-supervised learning algorithms for both the
non-iid sequences we are interested in as well as sequences transformed to be iid to better match
assumptions of the learning algorithms.

Acknowledgments

Resources used in preparing this research were provided, in part, by the Province of Ontario,
the Government of Canada through CIFAR, and companies sponsoring the Vector Institute (www.
vectorinstitute.ai/#partners). This project is supported by NSERC and the Intelligence
Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center
(DoI/IBC) contract number D16PC00003. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of IARPA, DoI/IBC, or the U.S. Government.

References

Kelsey R. Allen, Evan Shelhamer, Hanul Shin, and Joshua B. Tenenbaum. Infinite mixture prototypes
for few-shot learning. In ICML, 2019.

John R Anderson. The adaptive nature of human categorization. Psychological review, 98(3):409,
1991.

Antreas Antoniou and Amos J. Storkey. Assume, augment and learn: Unsupervised few-shot
meta-learning via random labels and data augmentation. CoRR, abs/1902.09884, 2019.

Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous
clustering and representation learning. In ICLR, 2020.

16

www.vectorinstitute.ai/#partners
www.vectorinstitute.ai/#partners

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Armand Joulin, Nicolas Ballas,
and Michael G. Rabbat. Semi-supervised learning of visual features by non-parametrically
predicting view assignments with support samples. In ICCV, 2021.

Leon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms. In NIPS, 1995.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. In NeurIPS, 2020.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for
unsupervised learning of visual features. In ECCV, 2018.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In NeurIPS, 2020.

Gail A Carpenter and Stephen Grossberg. A massively parallel architecture for a self-organizing
neural pattern recognition machine. Computer vision, graphics, and image processing, 37(1):
54–115, 1987.

Francisco M. Castro, Manuel J. Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In ECCV, 2018.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. CoRR,
abs/2106.14413, 2021.

Angel X. Chang, Angela Dai, Thomas A. Funkhouser, Maciej Halber, Matthias Nießner, Manolis
Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from RGB-D data in
indoor environments. In 3DV, 2017.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020a.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. 2021.

Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. CoRR, abs/2003.04297, 2020b.

Jang Hyun Cho, Utkarsh Mall, Kavita Bala, and Bharath Hariharan. Picie: Unsupervised semantic
segmentation using invariance and equivariance in clustering. In CVPR, 2021.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In CVPR, 2005.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NIPS, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. In ICML, 2018.

17

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Douglas H Fisher, Michael J Pazzani, and Pat Langley. Concept formation: Knowledge and
experience in unsupervised learning. Morgan Kaufmann, 1991.

Jhair Gallardo, Tyler L. Hayes, and Christopher Kanan. Self-supervised training enhances online
continual learning. CoRR, abs/2103.14010, 2021.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
CVPR, 2018.

Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick Pérez, and Matthieu Cord. Boosting
few-shot visual learning with self-supervision. In ICCV, 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent - A
new approach to self-supervised learning. In NeurIPS, 2020.

Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah Snavely, and William T Freeman.
Unsupervised semantic segmentation by distilling feature correspondences. In ICLR, 2022.

Tyler L. Hayes, Nathan D. Cahill, and Christopher Kanan. Memory efficient experience replay for
streaming learning. In ICRA, 2019.

Tyler L. Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. REMIND
your neural network to prevent catastrophic forgetting. In ECCV, 2020.

Jiawei He, Andreas M. Lehrmann, Joseph Marino, Greg Mori, and Leonid Sigal. Probabilistic video
generation using holistic attribute control. In ECCV, 2018.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

Olivier J Hénaff, Skanda Koppula, Jean-Baptiste Alayrac, Aaron Van den Oord, Oriol Vinyals, and
João Carreira. Efficient visual pretraining with contrastive detection. In ICCV, 2021.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015.

Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised learning via meta-learning. In ICLR,
2019.

Gabriel Huang, Hugo Larochelle, and Simon Lacoste-Julien. Centroid networks for few-shot
clustering and unsupervised few-shot classification. CoRR, abs/1902.08605, 2019.

Michael C. Hughes and Erik B. Sudderth. Memoized online variational inference for dirichlet process
mixture models. In NIPS, 2013.

Khurram Javed and Martha White. Meta-learning representations for continual learning. In NeurIPS,
2019.

18

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A. Heller. Reconciling meta-learning and
continual learning with online mixtures of tasks. In NeurIPS, 2019.

Matthew J. Johnson, David Duvenaud, Alexander B. Wiltschko, Ryan P. Adams, and Sandeep R.
Datta. Composing graphical models with neural networks for structured representations and fast
inference. In NIPS, 2016.

Weonyoung Joo, Wonsung Lee, Sungrae Park, and Il-Chul Moon. Dirichlet variational autoencoder.
Pattern Recognit., 107:107514, 2020.

Siavash Khodadadeh, Ladislau Bölöni, and Mubarak Shah. Unsupervised meta-learning for few-shot
image classification. In NeurIPS, 2019.

Chris Dongjoo Kim, Jinseo Jeong, and Gunhee Kim. Imbalanced continual learning with partitioning
reservoir sampling. In ECCV, 2020.

Rahul G. Krishnan, Uri Shalit, and David A. Sontag. Deep kalman filters. CoRR, abs/1511.05121,
2015.

Brenden M. Lake, Gautam K. Vallabha, and James L. McClelland. Modeling unsupervised perceptual
category learning. IEEE Trans. Auton. Ment. Dev., 1(1):35–43, 2009.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Stéphane Lathuilière, Pablo Mesejo, Xavier Alameda-Pineda, and Radu Horaud. Deepgum: Learning
deep robust regression with a gaussian-uniform mixture model. In ECCV, 2018.

Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and Steven C. H. Hoi. Prototypical contrastive
learning of unsupervised representations. In ICLR, 2021.

Bradley C Love, Douglas L Medin, and Todd M Gureckis. Sustain: a network model of category
learning. Psychological review, 111(2):309, 2004.

Carlos Medina, Arnout Devos, and Matthias Grossglauser. Self-supervised prototypical transfer
learning for few-shot classification. CoRR, abs/2006.11325, 2020.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations.
In CVPR, 2020.

Gregory Murphy. The big book of concepts. MIT press, 2004.

Boris N. Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. TADAM: task dependent adaptive
metric for improved few-shot learning. In NIPS, 2018.

A. Emin Orhan, Vaibhav V. Gupta, and Brenden M. Lake. Self-supervised learning through the eyes
of a child. In NeurIPS, 2020.

Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell, and Bharath Hariharan. Learning features
by watching objects move. In CVPR, 2017.

19

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Rafael C. Pinto and Paulo Martins Engel. A fast incremental gaussian mixture model. CoRR,
abs/1506.04422, 2015.

Dushyant Rao, Francesco Visin, Andrei A. Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. In NeurIPS, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:
Incremental classifier and representation learning. In CVPR, 2017.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum,
Hugo Larochelle, and Richard S. Zemel. Meta-learning for semi-supervised few-shot classification.
In ICLR, 2018.

Mengye Ren, Michael L. Iuzzolino, Michael C. Mozer, and Richard S. Zemel. Wandering within a
world: Online contextualized few-shot learning. In ICLR, 2021.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In
NIPS, 2017.

Mingzhou Song and Hongbin Wang. Highly efficient incremental estimation of gaussian mixture
models for online data stream clustering. In Intelligent Computing: Theory and Applications III,
volume 5803, pages 174–183. International Society for Optics and Photonics, 2005.

Jessica Sullivan, Michelle Mei, Andrew Perfors, Erica Wojcik, and Michael C Frank. Saycam: A
large, longitudinal audiovisual dataset recorded from the infant’s perspective. Open mind, 5:20–29,
2022.

Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and Yihong Gong. Few-shot
class-incremental learning. In CVPR, 2020.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In ECCV, 2020.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-
dataset: A dataset of datasets for learning to learn from few examples. In ICLR, 2020.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 9(11), 2008.

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, and Luc V Gool. Revisiting
contrastive methods for unsupervised learning of visual representations. NeurIPS, 2021.

Antonin Vobecky, David Hurych, Oriane Siméoni, Spyros Gidaris, Andrei Bursuc, Patrick Pérez, and
Josef Sivic. Drive&segment: Unsupervised semantic segmentation of urban scenes via cross-modal
distillation. In ECCV, 2022.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos.
In ICCV, 2015.

20

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Yuwen Xiong, Mengye Ren, Wenyuan Zeng, and Raquel Urtasun. Self-supervised representation
learning from flow equivariance. In ICCV, 2021.

Xiaohang Zhan, Jiahao Xie, Ziwei Liu, Yew-Soon Ong, and Chen Change Loy. Online deep
clustering for unsupervised representation learning. In CVPR, 2020.

Song Zhang, Gehui Shen, and Zhi-Hong Deng. Self-supervised learning aided class-incremental
lifelong learning. CoRR, abs/2006.05882, 2020.

Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and
self-supervision for incremental learning. In CVPR, 2021.

Yizhe Zhu, Martin Renqiang Min, Asim Kadav, and Hans Peter Graf. S3VAE: self-supervised
sequential VAE for representation disentanglement and data generation. In CVPR, 2020.

21

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Appendix A. Method Derivation

A.1. E-step

Inferring cluster assignments. The categorical variable ŷ infers the cluster assignment of the
current input example with regard to the existing clusters.

ŷt,k = Pr(yt = k|zt, u = 0) (14)

=
Pr(zt|yt = k, u = 0)Pr(yt = k)

Pr(zt, u = 0)
(15)

=
wkf(zt;pt,k, σ

2)∑
k′ wk′f(zt;pt,k′ , σ2)

(16)

=
exp(logwk − d(zt,pt,k)/2σ

2)∑
k′ exp(logw

′
k − d(zt,pt,k′)/2σ2)

(17)

= softmax (logwk − d(zt,pt,k)/τ) , (18)

= softmax(vt,k), (19)

where wk is the mixing coefficient of cluster k and d(·, ·) is the distance function, and vt,k is the
logits. In our experiments, wk’s are kept as constant and τ is an independent learnable parameter.

Inference on unknown classes. The binary variable û estimates the probability that the current
input belongs to a new cluster:

ût = Pr(ut = 1|zt) (20)

=
z0u0

z0u0 +
∑

k wkf(zt;pt,k, σ2)(1− u0)
(21)

=
1

1 + 1
z0u0

∑
k wkf(zt;pt,k, σ2)(1− u0)

(22)

=
1

1 + exp(log(1
z0u0

∑
k wkf(zt;pt,k, σ2)(1− u0)))

(23)

=
1

1 + exp(− log(z0)− log(u0) + log(1− u0) + log(
∑

k wkf(zt;pt,k, σ2))
(24)

=
1

1 + exp(−s+ log(
∑

k exp(log(wk)− d(zt,pt,k)/2σ2)))
(25)

= sigmoid(s− log(
∑
k

exp(log(wk)− d(zt,pt,k)/2σ
2))) (26)

= sigmoid(s− log(
∑
k

exp(vt,k))), (27)

where s = log(z0)+log(u0)− log(1−u0)+m log(σ)+m log(2π)/2 and m is the input dimension.
In our implementation, we use max here instead of logsumexp since we found max leads to better

22

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

and more stable training performance empirically. It can be derived as a lower bound:

ût = sigmoid(s− log(
∑
k

exp(log(wk)− d(zt,pt,k)/2σ
2))) (28)

≥ sigmoid(s− log(max
k

exp(−d(zt,pt,k)/2σ
2))) (29)

= sigmoid(s+min
k

d(zt,pt,k)/2σ
2) (30)

= sigmoid((min
k

d(zt,pt,k)− β)/γ), (31)

where β = −2sσ2, γ = 2σ2. To make learning more flexible, we directly make β and γ as
independent learnable parameters so that we can control the confidence level for predicting unknown
classes.

A.2. M-step

Here we infer the posterior distribution of the prototypes Pr(pt,k|z1:t). We formulate an efficient
recursive online update, similar to Kalman filtering, by incorporating the evidence of the current
input zt and avoiding re-clustering the entire input history. We define p̂t,k as the estimate of the
posterior mean of the k-th cluster at time step t, and σ̂2

t,k is the estimate of the posterior variance.

Updating prototypes. Suppose that in the E-step we have determined that yt = k. Then the
posterior distribution of the k-th cluster after observing zt is:

Pr(pt,k|z1:t, yt = k) (32)

∝ Pr(zt|pt,k, yt = k) Pr(pt,k|z1:t−1) (33)

= Pr(zt|pt,k, yt = k)

∫
p′
Pr(pt,k|pt−1,k = p′) Pr(pt−1,k = p′|z1:t−1) (34)

≈ f(zt;pt,k, σ
2)

∫
p′
f(pt,k;p

′, σ2
t,d)f(p

′; p̂t−1,k, σ̂
2
t−1,k) (35)

= f(zt;pt,k, σ
2)f(pt,k; p̂t−1,k, σ

2
t,d + σ̂2

t−1,k). (36)

If we assume that the transition probability distribution Pr(pt,k|pt−1,k) is a zero-mean Gaussian
with variance σ2

t,d = (1/ρ− 1)σ̂2
t−1,k, where ρ ∈ (0, 1] is some constant that we defined to be the

memory decay coefficient, then the posterior estimates are:

p̂t,k|yt=k =
ztσ̂

2
t−1,k/ρ+ p̂t−1,kσ

2

σ2 + σ̂2
t−1,k/ρ

, σ̂2
t,k|yt=k =

σ2σ̂2
t−1,k/ρ

σ2 + σ̂2
t−1,k/ρ

. (37)

If σ2 = 1, and ĉt,k ≡ 1/σ̂2
t,k, ĉt−1,k ≡ 1/σ̂2

t−1,k, it turns out we can formulate the update equation
as follows, and ĉt,k can be viewed as a count variable for the number of elements in each estimated
cluster, subject to the decay factor ρ over time:

ĉt,k|yt=k = ρĉt−1,k + 1, (38)

p̂t,k|yt=k = zt
1

ĉt,k|yt=k
+ p̂t−1,k

ρĉt−1,k

ĉt,k|yt=k
. (39)

23

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

If yt ̸= k, then the prototype posterior distribution simply gets diffused at timestep t:

Pr(pt,k|z1:t, yt ̸= k) ≈ f(pt,k; p̂t−1,k, σ̂
2
t−1,k/ρ) (40)

ĉt,k|yt ̸=k = ρĉt−1,k, (41)

p̂t,k|yt ̸=k = p̂t−1,k. (42)

Finally, our posterior estimates at time t are computed by taking the expectation over yt:

ĉt,k = E
yt
[ĉt,k|yt] (43)

= ĉt,k|yt=k Pr(yt = k|zt) + ĉt,k|yt ̸=k Pr(yt ̸= k|zt) (44)

= (ρĉt−1,k + 1)ŷt,k(1− ût,k) + ρĉt−1,k(1− ŷt,k(1− ût,k)), (45)

= ρĉt−1,k + ŷt,k(1− ût,k), (46)

p̂t,k = E
yt
[p̂t,k|yt] (47)

= p̂t,k|yt=k Pr(yt = k|zt) + p̂t,k|yt ̸=k Pr(yt ̸= k|zt) (48)

=

(
zt

1

ĉt,k|yt=k
+ p̂t−1,k

ρĉt−1,k

ĉt,k|yt=k

)
ŷt,k(1− ût,k) + p̂t−1,k(1− ŷt,k(1− ût,k)) (49)

= zt
ŷt,k(1− ût,k)

ρĉt−1,k + 1
+ p̂t−1,k

(
1− ŷt,k(1− ût,k) + ŷt,k(1− ût,k)

ρĉt−1,k

ρĉt−1,k + 1

)
(50)

= zt
ŷt,k(1− ût,k)

ρĉt−1,k + 1
+ p̂t−1,k

(
1−

ŷt,k(1− ût,k)

ρĉt−1,k + 1

)
. (51)

Since ĉt,k is also our estimate on the number of elements in each cluster, we can use it to estimate
the mixture weights,

ŵt,k =
ĉt,k∑
k′ ĉt,k

. (52)

Note that in our experiments the mixture weights are not used and we assume that each cluster has
an equal mixture probability.

Appendix B. Experiment Details

We provide additional implementation details in Tab. 7, 8, 9 and 10.

RoamingRooms. For baseline self-supervised learning methods, learning rate is scaled based
on batch size /256× 0.3 using the default LARS optimizer with cosine learning rate decay and 1
epoch of linear learning rate warmup. We trained for a total of 10,240,000 examples. So the total
number of training steps is 10,240,000 / batch size. For our proposed model, we used the batch
size of 50 and trained for a total of 80,000 steps (4,000,000 examples), using the Adam optimizer
and staircase learning rate decay starting from 10−3, with 10× learning rate decay at 40k and 60k
training steps. All data augmentation parameters are the same as the original SimCLR paper, except
that in RoamingRooms the minimum crop area is changed to 0.2 instead of the default 0.08. Other
details can be found in Table 7. We used a single Nvidia GeForce GTX 1080Ti GPU for running the

24

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Table 7: Experiment details for RoamingRooms

Hyperparameter Values

τ init 0.1
β init -12.0
γ init 1.0
Num prototypes K 150
Memory decay ρ 0.995
Beta mode µ 0.5
Entropy loss λent 0.0
New cluster loss λnew 0.5
Threshold α 0.5
Pseudo label temperature ratio τ̃ /τ 0.1

standard experiments (with batch size 50). For larger batch size self-supervised learning experiments,
we used up to 8 GPU in a data-parallel setup. On average, training of OUPN takes 1.28 episodes
per second, and full training of 80,000 steps takes 17 hours using 8G GPU memory and 5G CPU
memory. In comparison, SimCLR trains at a speed of 1.42 episodes per second and also 8G GPU
memory, which suggests that our sequential memory does not add too much computation overhead.
Evaluation speed is around 3.20 episodes per second.

SAYCam. Data augmentation is slightly different from the standard static image setting. We found
that there were a lot of blurred and shaking frames in the videos. Therefore, we added random
rotation, motion blur and Gaussian blur in the data augmentation procedure for all methods (including
the baselines). Motion blur is generated with a uniformly random direction between [0◦, 360◦), with
the length to be 5% of the image height, and Gaussian blur is generated by a blur kernel of 5% of the
image height with the standard deviation to be uniform between [0.1, 1.2). Same to all the baselines,
our SAYCam model also applies two different augmentations on each image in the input pair.

For baseline self-supervised learning methods, the learning rate is scaled based on the batch size
/256× 0.3, or 0.0879 (batch size = 75), using the default LARS optimizer with cosine learning rate
decay and 1 epoch of linear learning rate warmup. We trained the models for a total of 16 epochs.
The total number of training steps is 31,568 (1,973 steps per epoch). For the TC-S model, we used
the Adam optimizer with learning rate 1e-3 and batch size 75. We trained it for 38k steps with 10×
learning rate decays at 25k and 35k. For our model, we used the Adam optimizer with learning rate
1e-3, for a total of 30k training steps, with a 10× learning rate decay at 20k steps.

For ŷ and û, we found it was helpful to sample binary values for the two variables in the forward
pass, and use gradient straight-through estimator in the backward pass. This modification was only
applied on SAYCam experiments. Other details can be found in Table 8.

We used a single Nvidia GeForce GTX 1080Ti GPU for running the standard experiments (with
batch size 75). On average, training of OUPN takes around 2.60 seconds per episode, and full
training of 30,000 steps takes under 22 hours using 11G GPU memory and 7.5G CPU memory. In
comparison, SimCLR trains at a speed of 1.42 episodes per second and also 11G GPU memory,
which suggests that our sequential memory does not add too much computation overhead. Evaluation
speed is around 3.20 episodes per second.

25

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Table 8: Experiment details for SAYCam

Hyperparameter Values

Random motion blur 30% probability
Random Gaussian blur 20% probability
Random rotation uniform between -15◦ and 15◦

τ init 0.1
β init -12.0
γ init 1.0
Num prototypes K 75
Memory decay ρ 0.99
Beta mean µ 0.6 (mode=0.7)
Entropy loss λent 0.0
New cluster loss λnew 0.3
Threshold α 0.5
Pseudo label temperature ratio τ̃ /τ 0.0 (i.e. one-hot pseudo labels)

Table 9: Experiment details for RoamingOmniglot

Hyperparameter Values

τ init 0.1
β init -12.0
γ init 1.0
Num prototypes K 150
Memory decay ρ 0.995
Beta mean µ 0.5
Entropy loss λent 1.0
New cluster loss λnew 1.0
Threshold α 0.5
Pseudo label temperature ratio τ̃ /τ 0.2

RoamingOmniglot and RoamingImageNet. For baseline self-supervised learning methods on
RoamingOmniglot, the learning rate is scaled based on the batch size /256× 0.5, or 0.293 (batch
size = 150), using the default LARS optimizer with cosine learning rate decay and 10 epochs of
linear learning rate warmup. We trained the model for a total of 1,000 epochs. The total number of
training steps is 527,000 (527 per epoch).

For baseline self-supervised learning methods on RoamingImageNet, the learning rate is scaled
based on the batch size /256× 0.3, or 0.05625 (batch size = 48), using the default LARS optimizer
with cosine learning rate decay and 1 epoch of linear learning rate warmup. We trained the models
for a total of 10 epochs. The total number of training steps is 93,480 (9,348 per epoch).

For our model on both datasets, we train using the Adam optimizer with learning rate 1e-3, for
a total of 80k training steps, with 10× learning rate decay at 40k and 60k. More implementation
details can be found in Table 9 and 10. We used a single Nvidia GeForce GTX 1080Ti GPU for
running the experiments (with batch size 150 for RoamingOmniglot and 48 for RoamingImageNet).

26

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Table 10: Experiment details for RoamingImageNet

Hyperparameter Values

τ init 0.1
β init -12.0
γ init 1.0
Num prototypes K 600
Memory decay ρ 0.99
Beta mean µ 0.5
Entropy loss λent 0.5
New cluster loss λnew 0.5
Threshold α 0.5
Pseudo label temperature ratio τ̃ /τ 0.0 (i.e. one-hot pseudo labels)

Table 11: Unsupervised iid learning on Omniglot using an MLP

Method 3-NN Error 5-NN Error 10-NN Error

VAE (Joo et al., 2020) 92.34±0.25 91.21±0.18 88.79±0.35
SBVAE (Joo et al., 2020) 86.90±0.82 85.10±0.89 82.96±0.64
DirVAE (Joo et al., 2020) 76.55±0.23 73.81±0.29 70.95±0.29
CURL (Rao et al., 2019) 78.18±0.47 75.41±0.34 72.51±0.46

SimCLR (Chen et al., 2020a) 44.35±0.55 42.99±0.55 44.93±0.55
SwAV (Caron et al., 2020) 42.66±0.55 42.08±0.55 44.78±0.55

OUPN (Ours) 43.75±0.55 42.13±0.55 43.88±0.55

B.1. Metric Details

For each method, we used the same nearest centroid algorithm for online clustering. For unsupervised
readout, at each timestep, if the closest centroid is within threshold α, then we assign the new example
to the cluster, otherwise we create a new cluster. For supervised readout, we assign examples based
on the class label, and we create a new cluster if and only if the label is a new class. Both readout
procedures will provide us a sequence of class IDs, and we will use the following metrics to compare
our predicted class IDs and groundtruth class IDs. Both metrics are designed to be threshold invariant.

AMI. For unsupervised evaluation, we consider the adjusted mutual information score. Suppose
we have two clustering U = {Ui} and V = {Vj}, and Ui and Vj are set of example IDs, and N is
the total number of examples. U and V can be viewed as discrete probability distribution over cluster
IDs. Therefore, the mutual information score between U and V is:

MI(U, V) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj |
N

log

(
N |Ui ∩ Vj |
|Ui||Vj |

)
(53)

=
R∑
i=1

C∑
j=1

nij

N
log

(
Nnij

aibj

)
. (54)

27

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

The adjusted MI score1 normalizes the range between 0 and 1, and subtracts the baseline from
random chance:

AMI(U, V) =
MI(U, V)− E[MI(U, V)]

1
2(H(U) +H(V))− E[MI(U, V)]

, (55)

where H(·) denotes the entropy function, and E[MI(U, V)] is the expected mutual information by
chance 2. Finally, for each model, we sweep the threshold α to get a threshold invariant score:

AMImax = max
α

AMI(y, ŷ(α)). (56)

AP. For supervised evaluation, we used the AP metric. The AP metric is also threshold invariant,
and it takes both output û and ŷ into account. First it sorts all the prediction based on its unknown
score û in ascending order. Then it checks whether ŷ makes the correct prediction. For the N
top ranked instances in the sorted list, it computes: precision@N and recall@N among the known
instances.

• precision@N = 1
N

∑
n 1[ŷn = yn],

• recall@N = 1
K

∑
n 1[ŷn = yn],

where K is the true number of known instances among the top N instances. Finally, AP is computed
as the area under the curve of (y=precision@N, x=recall@N). For more details, see Appendix A.3 of
Ren et al. (2021).

Appendix C. Additional Experimental Results

C.1. Comparison to Reconstruction-Based Methods

We additionally provide Tab. 11 to show a comparison with CURL (Rao et al., 2019) in the iid setting.
We used the same MLP architecture and applied it on the Omniglot dataset using the same data split.
Reconstruction-based methods lag far behind self-supervised learning methods. Our method is on
par with SimCLR and SwAV.

C.2. Additional Studies on Hyperparameters

In Table 12, the threshold parameter is found to be the best at 0.5. However, this could be correlated
with how frequently the frames are sampled.

In Table 13, we found that the soft distillation loss is beneficial and slightly improves the
performance compared to hard distillation because it may preserve some level of uncertainty in the
pseudo labels.

1. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_
mutual_info_score.html

2. https://en.wikipedia.org/wiki/Adjusted_mutual_information

28

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html
https://en.wikipedia.org/wiki/Adjusted_mutual_information

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Table 12: Effect of threshold α

RoamingOmniglot RoamingRooms
α AMI AP AMI AP

0.3 82.75 90.57 52.60 58.71
0.4 81.59 90.94 59.69 66.11
0.5 89.65 95.22 77.96 84.34
0.6 87.01 93.87 64.65 69.49
0.7 86.08 92.94 66.60 73.54

Table 13: Effect of τ̃

RoamingOmniglot RoamingRooms
τ̃ / τ AMI AP AMI AP

0.05 89.23 95.01 77.44 84.38
0.10 89.71 95.21 77.89 84.99
0.20 89.78 95.31 77.82 84.57
0.50 89.40 95.13 76.81 83.90
1.00 89.62 95.16 0.00 19.91

Table 14: Effect of λent

RoamingOmniglot RoamingRooms
λent AMI AP AMI AP

0.00 82.45 90.66 76.64 84.11
0.25 87.31 93.85 76.61 83.16
0.50 87.98 94.21 75.46 81.78
0.75 88.77 94.74 74.76 79.91
1.00 89.70 95.14 75.32 80.29

Table 15: Effect of mean µ of the Beta prior

RoamingOmniglot RoamingRooms
µ AMI AP AMI AP

0.3 84.14 93.19 68.75 72.58
0.4 86.59 93.10 69.19 73.86
0.5 89.89 95.24 77.61 84.64
0.6 85.93 93.81 64.21 73.23
0.7 26.22 92.08 48.58 64.28

In Table 14, the entropy loss we introduced leads to a significant improvement on the Omniglot
dataset but not on the RoamingRooms dataset. This is likely because Omniglot is an easier task, so
having the entropy loss helps the model boost its confidence, whereas in RoamingRooms, increasing
model confidence may not be beneficial.

The Beta µ is computed as the following: Suppose a and b are the parameters of the Beta
distribution, and µ is the mean. We fix a = 4µ and b = 4− a. In Table 15, we found that the mean
of the Beta prior is the best at 0.5. It has more impact on the RoamingRooms dataset, and has less
impact on the RoamingOmniglot dataset. This parameter could be influenced by the total number of
clusters in each sequence.

Appendix D. Additional Visualization Results

We visualize the clustering mechanism and the learned image embeddings on RoamingRooms in
Fig. 8 and 9. The results suggest that our model can handle a certain level of view point changes by
grouping different view points of the same object into a single cluster. It also shows that our model is
instance-sensitive: for example, the headboard, pillows, and the blanket are successfully separated.

In Fig. 10 and 11, we visualize the learned categories in RoamingOmniglot using t-SNE (Van der
Maaten and Hinton, 2008). Different colors represent different ground-truth classes. Our method is
able to learn meaningful embeddings and roughly group items of similar semantic meanings together.

29

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Figure 8: Embeddings and clustering outputs of an example episode (1). Embeddings are extracted
from the trained CNN and projected to 2D space using t-SNE (Van der Maaten and Hinton, 2008).
The main object in each image is highlighted in a red mask. The nearest example to each cluster
centroid is enlarged. Image border colors indicate the cluster assignment.

30

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Figure 9: Embeddings and clustering outputs of another example episode (2).

31

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Figure 10: Embedding visualization of an unsupervised training episode of RoamingOmniglot.
Different colors denote the ground-truth class IDs.

32

M. REN, T.R. SCOTT, M.L. IUZZOLINO, M.C. MOZER & R. ZEMEL.

Figure 11: Embedding visualization of an test episode of RoamingOmniglot.

33

	Introduction
	Related Work
	Online Unsupervised Prototypical Networks
	Inference
	E-step
	M-step

	Learning

	Experiments
	Indoor home environments
	Head mounted camera recordings
	Handwritten characters and ImageNet images

	Conclusion
	Method Derivation
	E-step
	M-step

	Experiment Details
	Metric Details

	Additional Experimental Results
	Comparison to Reconstruction-Based Methods
	Additional Studies on Hyperparameters

	Additional Visualization Results

