
SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

Alexander Wang * 1 2 Mengye Ren * 1 2 Richard S. Zemel 1 2 3

Abstract
Sketch drawings capture the salient information
of visual concepts. Previous work has shown that
neural networks are capable of producing sketches
of natural objects drawn from a small number of
classes. While earlier approaches focus on gener-
ation quality or retrieval, we explore properties of
image representations learned by training a model
to produce sketches of images. We show that this
generative, class-agnostic model produces infor-
mative embeddings of images from novel exam-
ples, classes, and even novel datasets in a few-shot
setting. Additionally, we find that these learned
representations exhibit interesting structure and
compositionality.

1. Introduction
Drawings are frequently used to facilitate the communica-
tion of new ideas. If someone asked what an apple is, or
looks like, a natural approach would be to provide a simple,
pencil and paper drawing; perhaps a circle with divots on
the top and bottom and a small rectangle for a stem. These
sketches constitute an intuitive and succinct way to commu-
nicate concepts through a prototypical, visual representation.
This phenomenon is also preserved in logographic writing
systems such as Chinese hanzi and Egyptian hieroglyphs
where each character is essentially a sketch of the object it
represents. Frequently, humans are able to communicate
complex ideas in a few simple strokes.

Inspired by this idea that sketches capture salient aspects of
concepts, we hypothesize that it is possible to learn infor-
mative representations by expressing them as sketches. In
this paper we target the image domain and seek to develop
representations of images from which sketch drawings can
be generated. Recent research has explored a wide variety

*Equal contribution 1University of Toronto, Toronto,
Canada 2Vector Institute 3CIFAR. Correspondence to:
Alexander Wang <alexw@cs.toronto.edu>, Mengye
Ren <mren@cs.toronto.edu>, Richard S. Zemel
<zemel@cs.toronto.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

of sketch generation models, ranging from generative adver-
sarial networks (GANs) (Isola et al., 2017; Li et al., 2019),
to autoregressive (Gregor et al., 2015; Ha & Eck, 2018;
Chen et al., 2017), transformer (Ribeiro et al., 2020; Aksan
et al., 2020), hierarchical Bayesian (Lake et al., 2015) and
neuro-symbolic (Tian et al., 2020) models. These methods
may generate in pixel-space or in a sequential setting such
as a motor program detailing pen movements over a drawing
canvas. Many of them face shortcomings with respect to
representation learning on images: hierarchical Bayesian
models scale poorly, others only generate a single or a few
classes at a time, and many require sequential inputs, which
limit their use outside of creative applications.

We develop SketchEmbedNet, a class-agnostic encoder-
decoder model that produces a “SketchEmbedding” of an
input image as an encoding which is then decoded as a se-
quential motor program. By knowing “how to sketch an
image,” it learns an informative representation that leads
to strong performance on classification tasks despite being
learned without class labels. Additionally, training on a
broad collection of classes enables strong generalization
and produces a class-agnostic embedding function. We
demonstrate these claims by showing that our approach
generalizes to novel examples, classes, and datasets, most
notably in a challenging unsupervised few-shot classifica-
tion setting on the Omniglot (Lake et al., 2015) and mini-
ImageNet (Vinyals et al., 2016) benchmarks.

While pixel-based methods produce good visual results, they
may lack clear component-level awareness, or understand-
ing of the spatial relationships between them in an image;
we have seen this collapse of repeated components in GAN
literature (Goodfellow, 2017). By incorporating specific
pen movements and the contiguous definition of visual com-
ponents as points through time, SketchEmbeddings encode
a unique visual understanding not present in pixel-based
methods. We study the presence of componential and spa-
tial understanding in our experiments and also present a
surprising phenomenon of conceptual composition where
concepts can be added and subtracted through embeddings.



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

Sketch 
Genera�onsCNN Encoder RNN Decoder

SketchEmbedding
Input Image

Figure 1: Representation learning and generation setup – a pixel image is encoded as SketchEmbedding z then decoded
as a sequential sketch. Model input can be either a sketch image or a natural image.

2. Related Work
Sketch-based visual understanding. Recent research
motivates the use of sketches to understand and classify
images. Work by (Hertzmann, 2020) demonstrated that line
drawings are an informative depiction of shape and are in-
tuitive to human perception. Lamb et al. (2020) further,
proposed that sketches are a detail-invariant representation
of objects in an image that summarize salient visual informa-
tion. Geirhos et al. (2019) demonstrates that a shape-biased
perception, is more robust and reminiscent of human percep-
tion. We build on this intuition to sketches for shape-biased
perception by building a generative model to capture it in a
latent representation.

Sequential models for sketch generation. Many works
study the generation of sequential sketches without specify-
ing individual pixel values; Hinton & Nair (2005) trained a
generative model for MNIST (LeCun et al., 1998) examples
by specifying spring stiffness to move a pen in 2D space.
Graves (2013) introduced the use of an LSTM (Hochreiter
& Schmidhuber, 1997) to model handwriting as a sequence
of points using recurrent networks. SketchRNN (Ha &
Eck, 2018) extended the use of RNNs to sketching models
that draw a single class. Song et al. (2018); Chen et al.
(2017); Ribeiro et al. (2020) made use of pixel inputs and
consider more than one class while Ribeiro et al. (2020);
Aksan et al. (2020) introduced a transformer (Vaswani et al.,
2017) architecture to model sketches. Lake et al. (2015)
used a symbolic, hierarchical Bayesian model to generate
Omniglot (Lake et al., 2015) examples while Tian et al.
(2020) used a neuro-symbolic model for concept abstrac-
tion through sketching. Carlier et al. (2020) explored the
sequential generation of scalable vector graphics (SVG) im-
ages. We leverage the SketchRNN decoder for autoregres-
sive sketch generation, but extend it to hundreds of classes
with the focus of learning meaningful image representations.
Our model is reminiscent of (Chen et al., 2017) but to our
knowledge no existing works have learned a class-agnostic

sketching model using pixel image inputs.

Pixel-based drawing models. Sketches and other
drawing-like images can be specified directly in pixel space
by outputting pixel intensity values. They were proposed
as a method to learn general visual representation in the
early literature of computer vision (Marr, 1982). Since
then pixel-based “sketch images” can be generated through
style transfer and low-level processing techniques such as
edge detection (Arbelaez et al., 2011). Deep generative
models (Isola et al., 2017) using the GAN (Goodfellow
et al., 2014) architecture have performed image-sketch
domain translation and Photosketch (Li et al., 2019) focused
specifically on the task with an 1 : N image:sketch pairing.
Liu et al. (2020) generates sketch images using varying
lighting and camera perspectives combined with 3D mesh
information. Zhang et al. (2015) used a CNN model to
generate sketch-like images of faces. DRAW (Gregor et al.,
2015) autoregressively generates sketches in pixel space by
using visual attention. van den Oord et al. (2016); Rezende
et al. (2016) autoregressively generate pixel drawings. In
contrast to pixel-based approaches, SketchEmbedNet does
not directly specify pixel intensity and instead produces
a sequence of strokes that can be directly rendered into
a pixel image. We find that grouping pixels as “strokes”
improves the object awareness of our embeddings.

Representation learning using generative models. Fre-
quently, generative models have been used as a method of
learning useful representations for downstream tasks of in-
terest. In addition to being one of the first sketch-generation
works, Hinton & Nair (2005) also used the inferred motor
program to classify MNIST examples without class labels.
Many generative models are used for representation learn-
ing via an analysis-by-synthesis approach, e.g., deep and
variational autoencoders (Vincent et al., 2010; Kingma &
Welling, 2014), Helmholtz Machines (Dayan et al., 1995),
BiGAN (Donahue et al., 2017), etc. Some of these methods



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

seek to learn better representations by predicting additional
properties in a supervised manner. Instead of including
these additional tasks alongside pixel-based reconstruction,
we generate in the sketch domain to learn our shape-biased
representations.

Sketch-based image retrieval (SBIR). SBIR also seeks
to map sketches and sketch images to image space. The
area is split into fine-grained (FG-SBIR) (Yu et al., 2016;
Sangkloy et al., 2016; Bhunia et al., 2020) and a zero-shot
setting (ZS-SBIR) (Dutta & Akata, 2019; Pandey et al.,
2020; Dey et al., 2019). FG-SBIR considers minute details,
while ZS-SBIR learns high-level cross-domain semantics
and a joint latent space to perform retrieval.

3. Learning to Imitate Drawings
We present a generative sketching model that outputs a se-
quential motor program “sketch” describing pen movements,
given only an input image. It uses a CNN-encoder and an
RNN-decoder trained using our novel pixel-loss curricula
in addition to the objectives introduced in SketchRNN (Ha
& Eck, 2018).

3.1. Data representation

SketchEmbedNet is trained using image-sketch pairs (x,y),
where x ∈ RH×W×C is the input image and y ∈ RT×5
is the motor-program representing a sketch. We adopt the
same representation of y as used in SketchRNN (Ha & Eck,
2018). T is the maximum sequence length of the sketch
data y, and each ”stroke” yt is a pen movement that is
described by 5 elements, (∆x,∆y, s1, s2, s3). The first 2
elements are horizontal and vertical displacements on the
drawing canvas from the endpoint of the previous stroke.
The latter 3 elements are mutually exclusive pen states: s1
indicates the pen is on paper for the next stroke, s2 indicates
the pen is lifted, and s3 indicates the sketch sequence has
ended. The first ”stroke” y0 is initialized as (0, 0, 1, 0, 0) for
autoregressive generation. Note that no class information is
ever provided to the model while learning to draw.

3.2. Convolutional image embeddings

We use a CNN to encode the input image x and obtain the la-
tent space representation z, as shown in Figure 1. To model
intra-class variance, z is a Gaussian random variable param-
eterized by CNN outputs µ and σ like in a VAE (Kingma &
Welling, 2014). Throughout this paper, we refer to z as the
SketchEmbedding.

3.3. Autoregressive decoding of sketches

The RNN decoder used in SketchEmbedNet is the same
as in SketchRNN (Ha & Eck, 2018). The decoder outputs

a mixture density representing the distribution of the pen
offsets at each timestep. It is a mixture of M bivariate
Gaussians denoting the spatial offsets as well as the prob-
ability over the three pen states s1−3. The spatial offsets
∆ = (∆x,∆y) are sampled from the M mixture of Gaus-
sians, described by: (1) the normalized mixture weight πj ;
(2) mixture means µj = (µx, µy)j ; and (3) covariance ma-
trices Σj . We further reparameterize each Σj with its stan-
dard deviation σj = (σx, σy)j and correlation coefficient
ρxy,j . Thus, the stroke offset distribution is

p(∆) =

M∑
j=1

πjN (∆|µj ,Σj). (1)

The RNN is implemented using a HyperLSTM (Ha et al.,
2017); LSTM weights are generated at each timestep by a
smaller recurrent “hypernetwork” to improve training sta-
bility. Generation is autoregressive, using z ∈ RD, concate-
nated with the stroke from the previous timestep yt−1, to
form the input to the LSTM. Stroke yt−1 is the ground truth
supervision at train time (teacher forcing), or a sample y′

t−1,
from the mixture distribution output by the model during
from timestep t− 1.

3.4. Training objectives

We train the drawing model in an end-to-end fashion by
jointly optimizing three losses: a pen loss Lpen for learn-
ing pen states, a stroke loss Lstroke for learning pen offsets,
and our proposed pixel loss Lpixel for matching the visual
similarity of the predicted and the target sketch:

L = Lpen + (1− α)Lstroke + αLpixel, (2)

where α is a loss weighting hyperparameter. Both Lpen
and Lstroke were used in SketchRNN, while the Lpixel is a
novel contribution to stroke-based generative models. Un-
like SketchRNN, we do not impose a prior using KL diver-
gence as we are not interested in unconditional sampling,
and we found it had a negative impact on the experiments
reported below.

Pen loss. The pen-states predictions {s′1, s′2, s′3} are op-
timized as a simple 3-way classification with the softmax
cross-entropy loss,

Lpen = − 1

T

T∑
t=1

3∑
m=1

sm,t log(s′m,t). (3)

Stroke loss. The stroke loss maximizes the log-likelihood
of the spatial offsets of each ground truth stroke ∆t given
the mixture density distribution pt at each timestep:

Lstroke = − 1

T

T∑
t=1

log pt(∆t). (4)



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

(a) Quickdraw

(b) Sketchy

Figure 2: Samples of Quickdraw and Sketchy data. Sketchy
examples are paired sketches and natural images.

Pixel loss. While pixel-level reconstruction objectives are
common in generative models (Kingma & Welling, 2014;
Vincent et al., 2010; Gregor et al., 2015), they do not exist
for sketching models. However, they still represent a mean-
ingful form of generative supervision, promoting visual
similarity in the generated result. To enable this loss, we de-
veloped a novel rasterization function fraster that produces a
pixel image from our stroke parameterization of sketch draw-
ings. fraster transforms the stroke sequence y by viewing
it as a set of 2D line segments (l0, l1), (l1, l2) . . . (lT−1, lT )
where lt =

∑t
τ=0 ∆τ . Then, for any arbitrary canvas size

we can scale the line segments, compute the distance from
every pixel on the canvas to each segment and assign a pixel
intensity that is inverse to the shortest distance.

To compute the loss, we apply fraster and a Gaussian blurring
filter gblur(·) to both our prediction y′ and ground truth y
then compute the binary cross-entropy loss. The Gaussian
blur is used to reduce the strictness of our pixel-wise loss.

I = gblur(fraster(y)), I ′ = gblur(fraster(y
′)) (5)

Lpixel = − 1

HW

H∑
i=1

W∑
j=1

Iij log(I ′ij). (6)

Curriculum training schedule. We find that α (in Equa-
tion 2) is an important hyperparameter that impacts both
the learned embedding space and SketchEmbedNet. A cur-
riculum training schedule is used, increasing α to prioritize
Lpixel relative to Lstroke as training progresses; this makes
intuitive sense as a single drawing can be produced by many
stroke sequences but learning to draw in a fixed manner is
easier. While Lpen promotes reproducing a specific drawing
sequence, Lpixel only requires that the generated drawing
visually matches the image. Like a human, the model should
learn to follow one drawing style (à la paint-by-numbers)
before learning to draw freely.

4. Experiments
In this section, we present our experiments on SketchEm-
bedNet and investigate the properties of SketchEmbeddings.

(a) Quickdraw

(b) Sketchy

Figure 3: Generated sketches of unseen examples from
classes seen during training. Left–input; right–generated
image

SketchEmbedNet is trained on diverse examples of sketch–
image pairs that do not include any semantic class labels.
After training, we freeze the model weights and use the
learned CNN encoder as the embedding function to produce
SketchEmbeddings for various input images. We study the
generalization of SketchEmbeddings through classification
tasks involving novel examples, classes and datasets. We
then examine emergent spatial and compositional properties
of the representation and evaluate model generation quality.

4.1. Training by drawing imitation

We train our drawing model on two different datasets that
provide sketch supervision.

• Quickdraw (Jongejan et al., 2016) (Figure 2a) pairs
sketches with a line drawing “rendering” of the motor
program and contains 345 classes of 70,000 examples,
produced by human players participating in the game
“Quick, Draw!” 300 of 345 classes are randomly se-
lected for training; x is rasterized to a resolution of
28×28 and stroke labels y padded up to length T = 64.
Any drawing samples exceeding this length were dis-
carded. Data processing procedures and class splits are
in Appendix C.

• Sketchy (Sangkloy et al., 2016) (Figure 2b) is a
more challenging collection of (photorealistic) natu-
ral image–sketch pairs and contains 125 classes from
ImageNet (Deng et al., 2009), selected for “sketcha-
bility”. Each class has 100 natural images paired with
up to 20 loosely aligned sketches for a total of 75,471
image–sketch pairs. Images are resized to 84× 84 and
padded to increase spatial agreement; sketch sequences
are set to a max length T = 100. Classes that overlap
with the test set of mini-ImageNet (Ravi & Larochelle,
2017) are removed from our training set, to faithfully



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

Table 1: Few-shot classification results on Omniglot

Omniglot (way, shot)

Algorithm Encoder Train Data (5,1) (5,5) (20,1) (20,5)

Training from Scratch (Hsu et al., 2019) N/A Omniglot 52.50 ± 0.84 74.78 ± 0.69 24.91 ± 0.33 47.62 ± 0.44
CACTUs-MAML (Hsu et al., 2019) Conv4 Omniglot 68.84 ± 0.80 87.78 ± 0.50 48.09 ± 0.41 73.36 ± 0.34
CACTUs-ProtoNet (Hsu et al., 2019) Conv4 Omniglot 68.12 ± 0.84 83.58 ± 0.61 47.75 ± 0.43 66.27 ± 0.37
AAL-ProtoNet (Antoniou & Storkey, 2019) Conv4 Omniglot 84.66 ± 0.70 88.41 ± 0.27 68.79 ± 1.03 74.05 ± 0.46
AAL-MAML (Antoniou & Storkey, 2019) Conv4 Omniglot 88.40 ± 0.75 98.00 ± 0.32 70.20 ± 0.86 88.30 ± 1.22
UMTRA (Khodadadeh et al., 2019) Conv4 Omniglot 83.80 95.43 74.25 92.12
Random CNN Conv4 N/A 67.96 ± 0.44 83.85 ± 0.31 44.39 ± 0.23 60.87 ± 0.22
Conv-VAE Conv4 Omniglot 77.83 ± 0.41 92.91 ± 0.19 62.59 ± 0.24 84.01 ± 0.15
Conv-VAE Conv4 Quickdraw 81.49 ± 0.39 94.09 ± 0.17 66.24 ± 0.23 86.02 ± 0.14
Contrastive Conv4 Omniglot* 77.69 ± 0.40 92.62 ± 0.20 62.99 ± 0.25 83.70 ± 0.16
SketchEmbedNet (Ours) Conv4 Omniglot* 94.88 ± 0.22 99.01 ± 0.08 86.18 ± 0.18 96.69 ± 0.07
Contrastive Conv4 Quickdraw* 83.26 ± 0.40 94.16 ± 0.21 73.01 ± 0.25 86.66 ± 0.17
SketchEmbedNet (Ours) Conv4 Quickdraw* 96.96 ± 0.17 99.50 ± 0.06 91.67 ± 0.14 98.30 ± 0.05

MAML (Supervised) (Finn et al., 2017) Conv4 Omniglot 94.46 ± 0.35 98.83 ± 0.12 84.60 ± 0.32 96.29 ± 0.13
ProtoNet (Supervised) (Snell et al., 2017) Conv4 Omniglot 98.35 ± 0.22 99.58 ± 0.09 95.31 ± 0.18 98.81 ± 0.07

* Sequential sketch supervision used for training

evaluate few-shot classification performance.

Data samples are presented in Figure 2; for Quickdraw, the
input image x and the rendered sketch y are the same. We
train a single model on Quickdraw using a 4-layer CNN
(Conv4) encoder (Vinyals et al., 2016) and another on the
Sketchy dataset with a ResNet-12 (Oreshkin et al., 2018)
encoder architecture.

Baselines. We consider the following baselines to com-
pare with SketchEmbedNet.

• Contrastive is similar to the search embedding of
Ribeiro et al. (2020); a metric learning baseline that
matches CNN image embeddings with corresponding
RNN sketch embeddings. Our baseline is trained using
the InfoNCE loss (van den Oord et al., 2018).

• Conv-VAE (Kingma & Welling, 2014) performs pixel-
level representation learning without motor program
information.

• Pix2Pix (Isola et al., 2017) is a generative adversar-
ial approach that performs image to sketch domain
transfer but is supervised by sketch images and not the
sequential motor program.

Note that Contrastive is an important comparison for
SketchEmbedNet as it also uses the motor-program se-
quence when training on sketch-image pairs.

Implementation details. SketchEmbedNet is trained for
300k iterations with batch size of 256 for Quickdraw and

64 for Sketchy due to memory constraints. Initial learning
rate is 1e-3 decaying by 0.85 every 15k steps. We use the
Adam (Kingma & Ba, 2015) optimizer and clip gradient
values to 1.0. Latent space dim(z) = 256, RNN output size
is 1024, and hypernetwork embedding is 64. Mixture count
is M = 30 and Gaussian blur from Lpixel uses σ = 2.0.

Conv4 encoder is identical to Vinyals et al. (2016) and the
ResNet-12 encoder uses 4 blocks of 64-128-256-512 filters
with ReLU activations. α is set to 0 and increases by 0.05
every 10k training steps with an empirically obtained cap at
αmax = 0.50 for Quickdraw and αmax = 0.75 for Sketchy.
See Appendix B for additional details.

4.2. Few-Shot Classification using SketchEmbeddings

SketchEmbedNet transforms images to strokes, the learned,
shape-biased representations could be useful for explaining
a novel concept. In this section, we evaluate the ability of
learning novel concepts from unseen datasets using few-
shot classification benchmarks on Omniglot (Lake et al.,
2015) and mini-ImageNet (Vinyals et al., 2016). In few-shot
classification, models learn a set of novel classes from only a
few examples. We perform few-shot learning on standardN -
way, K-shot episodes by training a simple linear classifier
on top of SketchEmbeddings.

Typically, the training data of few-shot classification is
fully labelled, and the standard approaches learn by uti-
lizing the labelled training data before evaluation on novel
test classes (Vinyals et al., 2016; Finn et al., 2017; Snell
et al., 2017). Unlike these methods, SketchEmbedNet does
not use class labels during training. Therefore, we com-
pare our model to unsupervised few-shot learning methods



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

Table 2: Few-shot classification results on mini-ImageNet

mini-ImageNet (way, shot)

Algorithm Backbone Train Data (5,1) (5,5) (5,20) (5,50)

Training from Scratch (Hsu et al., 2019) N/A mini-ImageNet 27.59 ± 0.59 38.48 ± 0.66 51.53 ± 0.72 59.63 ± 0.74
CACTUs-MAML (Hsu et al., 2019) Conv4 mini-ImageNet 39.90 ± 0.74 53.97 ± 0.70 63.84 ± 0.70 69.64 ± 0.63
CACTUs-ProtoNet (Hsu et al., 2019) Conv4 mini-ImageNet 39.18 ± 0.71 53.36 ± 0.70 61.54 ± 0.68 63.55 ± 0.64
AAL-ProtoNet (Antoniou & Storkey, 2019) Conv4 mini-ImageNet 37.67 ± 0.39 40.29 ± 0.68 - -
AAL-MAML (Antoniou & Storkey, 2019) Conv4 mini-ImageNet 34.57 ± 0.74 49.18 ± 0.47 - -
UMTRA (Khodadadeh et al., 2019) Conv4 mini-ImageNet 39.93 50.73 61.11 67.15
Random CNN Conv4 N/A 26.85 ± 0.31 33.37 ± 0.32 38.51 ± 0.28 41.41 ± 0.28
Conv-VAE Conv4 mini-ImageNet 23.30 ± 0.21 26.22 ± 0.20 29.93 ± 0.21 32.57 ± 0.20
Conv-VAE Conv4 Sketchy 23.27 ± 0.18 26.28 ± 0.19 30.41 ± 0.19 33.97 ± 0.19
Random CNN ResNet12 N/A 28.59 ± 0.34 35.91 ± 0.34 41.31 ± 0.33 44.07 ± 0.31
Conv-VAE ResNet12 mini-ImageNet 23.82 ± 0.23 28.16 ± 0.25 33.64 ± 0.27 37.81 ± 0.27
Conv-VAE ResNet12 Sketchy 24.61 ± 0.23 28.85 ± 0.23 35.72 ± 0.27 40.44 ± 0.28
Contrastive ResNet12 Sketchy* 30.56 ± 0.33 39.06 ± 0.33 45.17 ± 0.33 47.84 ± 0.32
SketchEmbedNet (ours) Conv4 Sketchy* 38.61 ± 0.42 53.82 ± 0.41 63.34 ± 0.35 67.22 ± 0.32
SketchEmbedNet (ours) ResNet12 Sketchy* 40.39 ± 0.44 57.15 ± 0.38 67.60 ± 0.33 71.99 ± 0.3

MAML (supervised) (Finn et al., 2017) Conv4 mini-ImageNet 46.81 ± 0.77 62.13 ± 0.72 71.03 ± 0.69 75.54 ± 0.62
ProtoNet (supervised) (Snell et al., 2017) Conv4 mini-ImageNet 46.56 ± 0.76 62.29 ± 0.71 70.05 ± 0.65 72.04 ± 0.60

* Sequential sketch supervision used for training

Table 3: Effect of αmax on few-shot classification accuracy

αmax 0.00 0.25 0.50 0.75 0.95 1.00

Omniglot(20,1) 87.17 87.82 91.67 90.59 89.77 87.63
mini-ImageNet(5,1) 38.00 38.75 38.11 39.31 38.53 37.78

CACTUs (Hsu et al., 2019), AAL (Antoniou & Storkey,
2019) and UMTRA (Khodadadeh et al., 2019). CACTUs
is a clustering-based method while AAL and UMTRA use
data augmentation to approximate supervision for meta-
learning (Finn et al., 2017). We also compare to our base-
lines that use this sketch information: both SketchEmbedNet
and Contrastive use motor-program sequence supervision,
and Pix2Pix (Isola et al., 2017) requires natural and sketch
image pairings. In addition to these, we provide supervised
few-shot learning results using MAML (Finn et al., 2017)
and ProtoNet (Snell et al., 2017) as references.

Omniglot results. The results on Omniglot (Lake et al.,
2015) using the split from Vinyals et al. (2016) are reported
in Table 1. SketchEmbedNet obtains the highest classifica-
tion accuracy when training on the Omniglot dataset. The
Conv-VAE and as well as the Contrastive model are out-
performed by existing unsupervised methods but not by a
huge margin.1 When training on the Quickdraw dataset
SketchEmbedNet sees a substantial accuracy increase and
exceeds the classification accuracy of the supervised MAML
approach. While our model has arguably more supervi-
sion information than the unsupervised methods, our per-
formance gains relative to the Contrastive baseline shows

1We do not include the Pix2Pix baseline here as the input and
output images are the same.

Table 4: Classification accuracy of novel examples and
classes

300-way 45-way
Training Classes Unseen Classes

Random CNN 0.85 16.42
Conv-VAE 18.70 53.06
Contrastive 41.58 70.72

SketchEmbedNet 42.80 75.68
(a) Quickdraw

Embedding model ILSVRC Top-1 ILSVRC Top-5

Random CNN 1.58 4.78
Conv-VAE 1.13 3.78

Pix2Pix 1.23 4.29
Contrastive 3.95 10.91

SketchEmbedNet 6.15 16.20
(b) Sketchy.

that this does not fully explain the results. Furthermore, our
method transfers well from Quickdraw to Omniglot without
ever seeing a single Omniglot character.

mini-ImageNet results. The results on mini-
ImageNet (Vinyals et al., 2016) using the split from (Ravi &
Larochelle, 2017) are reported in Table 2. SketchEmbedNet
outperforms existing unsupervised few-shot classification
approaches. We report results using both Conv4 and
ResNet12 backbones; the latter allows more learning
capacity for the drawing imitation task, and consistently
achieves better performance. Unlike on the Omniglot
benchmark, Contrastive and Conv-VAE perform poorly
compared to existing methods, whereas SketchEmbedNet
scales well to natural images and again outperforms other



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings
C
o
n
v-
V
A
E

C
o
n
tr
as
ti
ve

Sk
et
ch
Em

b
ed

d
in
g

Figure 4: Embedding clustering of images with differ-
ent component arrangements. Left–numerosity; middle–
placement; right–containment

unsupervised few-shot learning methods, and even matches
the performance of a supervised ProtoNet on 5-way 50-shot
(71.99 vs. 72.04). This suggests that forcing the model to
generate sketches yields more informative representations.

Effect of pixel-loss weighting. We ablate pixel loss coeffi-
cient αmax to quantify its impact on the observed represen-
tation, using the Omniglot task (Table 3). There is a sub-
stantial improvement in few-shot classification when αmax
is non-zero. αmax= 0.50 achieves the best results for Quick-
draw, while it trends downwards when αmax approaches
to 1.0. mini-ImageNet performs best at αmax = 0.75
Over-emphasizing the pixel-loss while using teacher forcing
causes the model to create sketches by using many strokes,
and does not generalize to true autoregressive generation.

4.3. Intra-Dataset Classification

While few-shot classification demonstrates a strong form of
generalization to novel classes, and in SketchEmbedNet’s
case entirely new datasets, we also investigate the useful
information learned from the same datasets used in training.
Here we study a conventional classification problem: we
train a single layer linear classifier on top of input SketchEm-
beddings of images drawn from the training dataset. We
report accuracy on a validation set of novel images from the
same classes, or new classes from the same training dataset.

Quickdraw results. The training data consists of 256 la-
belled examples for each of the 300 training classes. New
example generalization is evaluated in 300-way classifi-
cation on unseen examples of training classes. Novel

C
o
n
v-
V
A
E

C
o
n
tr
as
ti
ve

Sk
et
ch
Em

b
ed

d
in
g

Figure 5: Recovering spatial variables embedded within
image components. Left–distance; middle–angle; right–
size

class generalization is evaluated on 45-way classification
of unseen Quickdraw classes. The results are presented
in Table 4a. SketchEmbedNet obtains the best classifica-
tion performance. The Contrastive method also performs
well, demonstrating the informativeness of sketch supervi-
sion. Note that while Contrastive performs well on training
classes, it performs worse on unseen classes. The few-shot
benchmarks in Tables 1, 2 suggest our generative objective
is more suitable for novel class generalization. Unlike in the
few-shot tasks, a Random CNN performs very poorly likely
because the linear classification head lacks the capacity to
discriminate the random embeddings.

Sketchy results. Since there are not enough examples
or classes to test unseen classes within Sketchy, we eval-
uate model generalization on 1000-way classification of
ImageNet-1K (ILSVRC2012), and the validation accuracy
is presented in Table 4b. It is important to note that all the
methods shown here only have access to a maximum of 125
Sketchy classes during training, resized down to 84×84,
with a max of 100 unique photos per class, and thus they are
not directly comparable to current state-of-the-art methods
trained on ImageNet. SketchEmbedNet once again obtains
the best performance, not only relative to the image-based
baselines, Random CNN, Conv-VAE and Pix2Pix, but also
to the Contrastive learning model, which like SketchEmbed-
Net utilizes the sketch information during training. While
Contrastive is competitive in Quickdraw classification, it
does not maintain this performance on more difficult tasks
with natural images, much like in the few-shot natural image
setting. Unlike in Quickdraw classification where pretrain-



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

- +          =- +          =

- +          = - +          =

- +          =

- +          =

- +          =

- +          =

- +          =

- +          =

- +          =

- +          =

Conv-VAE

SketchEmbedding

Figure 6: Conceptual composition of image representations.
Several sketches are shown for the two models following
algebraic operations on their embedding vectors.

ing is effective, all 3 pixel-based methods perform similarly
poorly.

4.4. Emergent properties of SketchEmbeddings

Here we probe properties of the image representations
formed by SketchEmbedNet and the baseline models. We
construct a set of experiments to showcase the spatial and
component-level visual understanding and conceptual com-
position in the embedding space.

Arrangement of image components. To test component-
level awareness, we construct image examples containing
different arrangements of multiple objects in image space.
We then embed these examples and project into 2D space
using UMAP (McInnes et al., 2018) to visualize their organi-
zation. The leftmost panel of Figure 4 exhibits a numerosity
relation with Quickdraw classes containing duplicated com-
ponents; snowmen with circles and televisions with squares.
The next two panels of Figure 4 contain examples with
a placement and containment relation. SketchEmbedding
representations are the most distinguishable and are easily
separable. The pixel-based Conv-VAE is the least distin-
guishable, while the Contrastive model performs well in
the containment case but poorly in the other two. As these
image components are drawn contiguous through time and
separated by lifted pen states, SketchEmbedNet learns to
group the input pixels together as abstract elements to be
drawn together.

Recovering spatial relationships. We examine how the
underlying variables of distance, angle or size are captured
by the studied embedding functions. We construct and
embed examples changing each of the variables of inter-
est. The embeddings are again projected into 2D by the
UMAP (McInnes et al., 2018) algorithm in Figure 5. Af-
ter projection, SketchEmbedNet recovers the variable of

Figure 7: Generated sketches of images from datasets un-
seen during training. Left–input; right–generated image

Seen Unseen

Original Data 97.66 96.09

Conv-VAE 76.28 ± 0.93 75.07 ± 0.84
SketchEmbedNet 81.44 ± 0.95 77.94 ± 1.07

Table 5: Classification accuracy for generated sketch im-
ages.

interest as an approximately linear manifold in 2D space;
the Contrastive embedding produces similar results, while
the pixel-based Conv-VAE is more clustered and non-linear.
This shows that relating images to sketch motor programs
encourages the system to learn the spatial relationships be-
tween components, since it needs to produce the ∆x and
∆y values to satisfy the training objective.

Conceptual composition. Finally, we explore the use of
SketchEmbeddings for composing embedded concepts. In
natural language literature, vector algebra such as “king” -
“man” + “woman” = “queen” (Mikolov et al., 2013) shows
linear compositionality in the concept space of word embed-
ding. It has also been demonstrated in human face images
and vector graphics (Bojanowski et al., 2018; Shen et al.,
2020; Carlier et al., 2020). Here we try to explore such
concept compositionality property in sketch image under-
standing as well. We embed examples of simple shapes such
as a square or circle as well as more complex examples like
a snowman or mail envelope and perform arithmetic in the
latent space. Surprisingly, upon decoding the SketchEmbed-
ding vectors we recover intuitive sketch generations. For
example, if we subtract the embedding of a circle from
snowman and add a square, then the resultant vector gets
decoded into an image of a stack of boxes. We present
examples in Figure 6. By contrast, the Conv-VAE does not
produce sensible decodings on this task.

4.5. Evaluating generation quality

Another method to evaluate our learned image represen-
tations is through the sketches generated based on these
representations; a good representation should produce a
recognizable image. Figures 3 and 7 show that SketchEm-
bedNet can generate reasonable sketches of training classes
as well as unseen data domains. When drawing natural im-



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

Meta PixelCNNRezende et al.SketchEmbedNet

Support

Generated
Samples

Figure 8: One-shot Omniglot generation compared to Rezende et al. (2016); Reed et al. (2018).

ages, it sketches the general shape of the subject rather than
replicating specific details.

Classifying generated examples. Quantative assessment
of generated images is often challenging and per-pixel met-
rics like in (Reed et al., 2018; Rezende et al., 2016) may
penalize generative variation that still preserves meaning.
We train ResNet classifiers for an Inception Score (Salimans
et al., 2016) inspired metric. One classifier is trained on
45 (“seen”) Quickdraw training classes and the other on
45 held out (“unseen”) classes that were not encountered
during model training. Samples generated by a sketching
model are rendered, then classified; we report each classi-
fier’s accuracy on these examples compared to its training
accuracy in Table 5. SketchEmbedNet produces more recog-
nizable sketches than a Conv-VAE model when generating
examples of both seen and unseen object classes.

Qualitative comparison of generations. In addition to
the Inception-score (Salimans et al., 2016) inspired metric,
we also qualitatively assess the generations of SketchEmbed-
Net on unseen datasets. One-shot generations are sampled
from Omniglot (Lake et al., 2015) and are visually compared
with other few- and one-shot generation methods (Rezende
et al., 2016; Reed et al., 2018) (Figure 8).

None of the models have seen any examples from the charac-
ter class or parent alphabet. Furthermore, SketchEmbedNet
was not trained on any Omniglot data. Visually, our gener-
ated images better resemble the support examples and have
generative variance that better preserves class semantics.
Generations in pixel space may disrupt strokes and alter
the character to human perception. This is especially true
for written characters as they are frequently defined by a
specific set of strokes instead of blurry clusters of pixels.

Discussion. While having a generative objective is useful
for representation learning (we see that SketchEmbedNet
outperform our Contrastive representations), it is insufficient
to guarantee an informative embedding for other tasks. The

Conv-VAE generations perform slightly worse on the recog-
nizability task in Table 5, while being significantly worse in
our previous classification tasks in Tables 1, 2 and 4.

This suggests that the output domain has an impact on the
learned representation. The increased componential and spa-
tial awareness from generating sketches (as in Section 4.4)
makes SketchEmbeddings better for downstream classifica-
tion tasks by better capturing the visual shape in images.

5. Conclusion
Learning to draw is not only an artistic pursuit but drives a
distillation of real-world visual concepts. In this paper, we
present a model that learns representation of images which
capture salient features, by producing sketches of image
inputs. While sketch data may be challenging to source,
we show that SketchEmbedNet can generalize to image do-
mains beyond the training data. Finally, SketchEmbedNet
achieves competitive performance on few-shot learning of
novel classes, and represents compositional properties, sug-
gesting that learning to draw can be a promising avenue for
learning general visual representations.

Acknowledgments We thank Jake Snell, James Lucas
and Robert Adragna for their helpful feedback on ear-
lier drafts of the manuscript. Resources used in prepar-
ing this research were provided, in part, by the Province
of Ontario, the Government of Canada through CIFAR,
and companies sponsoring the Vector Institute (www.
vectorinstitute.ai/#partners). This project is
supported by NSERC and the Intelligence Advanced Re-
search Projects Activity (IARPA) via Department of Inte-
rior/Interior Business Center (DoI/IBC) contract number
D16PC00003. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Dis-
claimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,

www.vectorinstitute.ai/#partners
www.vectorinstitute.ai/#partners


SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

either expressed or implied, of IARPA, DoI/IBC, or the U.S.
Government.



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

References
Aksan, E., Deselaers, T., Tagliasacchi, A., and Hilliges, O.

Cose: Compositional stroke embeddings. Advances in
Neural Information Processing Systems, 33, 2020.

Antoniou, A. and Storkey, A. J. Assume, augment and learn:
Unsupervised few-shot meta-learning via random labels
and data augmentation. CoRR, abs/1902.09884, 2019.

Arbelaez, P., Maire, M., Fowlkes, C. C., and Malik, J. Con-
tour detection and hierarchical image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 33(5):898–916, 2011.

Bhunia, A. K., Yang, Y., Hospedales, T. M., Xiang, T.,
and Song, Y.-Z. Sketch less for more: On-the-fly fine-
grained sketch-based image retrieval. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
CVPR, 2020.

Bojanowski, P., Joulin, A., Lopez-Paz, D., and Szlam, A.
Optimizing the latent space of generative networks. In
Dy, J. G. and Krause, A. (eds.), Proceedings of the 35th
International Conference on Machine Learning, ICML,
2018.

Carlier, A., Danelljan, M., Alahi, A., and Timofte, R.
Deepsvg: A hierarchical generative network for vector
graphics animation. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H. (eds.), Advances in Neu-
ral Information Processing Systems 33, NeurIPS, 2020.

Chen, Y., Tu, S., Yi, Y., and Xu, L. Sketch-pix2seq: a
model to generate sketches of multiple categories. CoRR,
abs/1709.04121, 2017.

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. The
helmholtz machine. Neural computation, 7(5):889–904,
1995.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F.
Imagenet: A large-scale hierarchical image database. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition CVPR, 2009.

Dey, S., Riba, P., Dutta, A., Llados, J., and Song, Y.-Z.
Doodle to search: Practical zero-shot sketch-based image
retrieval. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR, 2019.

Donahue, J., Krähenbühl, P., and Darrell, T. Adversarial
feature learning. In 5th International Conference on
Learning Representations, ICLR, 2017.

Douglas, D. H. and Peucker, T. K. Algorithms for the
reduction of the number of points required to represent a
digitized line or its caricature. 1973.

Dutta, A. and Akata, Z. Semantically tied paired cycle
consistency for zero-shot sketch-based image retrieval.
In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2019.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning, ICML, 2017.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-
mann, F. A., and Brendel, W. Imagenet-trained cnns are
biased towards texture; increasing shape bias improves
accuracy and robustness. In 7th International Conference
on Learning Representations, ICLR, 2019.

George, D., Lehrach, W., Kansky, K., Lázaro-Gredilla, M.,
Laan, C., Marthi, B., Lou, X., Meng, Z., Liu, Y., Wang,
H., Lavin, A., and Phoenix, D. S. A generative vision
model that trains with high data efficiency and breaks
text-based captchas. Science, 358(6368), 2017. ISSN
0036-8075. doi: 10.1126/science.aag2612.

Goodfellow, I. J. NIPS 2016 tutorial: Generative adversarial
networks. CoRR, abs/1701.00160, 2017.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. C., and Bengio,
Y. Generative adversarial nets. In Advances in Neural
Information Processing Systems 27, NIPS, 2014.

Graves, A. Generating sequences with recurrent neural
networks. CoRR, abs/1308.0850, 2013.

Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., and
Wierstra, D. DRAW: A recurrent neural network for im-
age generation. In Proceedings of the 32nd International
Conference on Machine Learning, ICML, 2015.

Ha, D. and Eck, D. A neural representation of sketch draw-
ings. In 6th International Conference on Learning Repre-
sentations, ICLR, 2018.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. In 5th
International Conference on Learning Representations,
ICLR, 2017.

Hertzmann, A. Why do line drawings work? a realism
hypothesis. Perception, 49:439 – 451, 2020.

Hewitt, L. B., Nye, M. I., Gane, A., Jaakkola, T. S., and
Tenenbaum, J. B. The variational homoencoder: Learning
to learn high capacity generative models from few exam-
ples. In Proceedings of the Thirty-Fourth Conference on
Uncertainty in Artificial Intelligence, UAI, 2018.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

variational framework. In 5th International Conference
on Learning Representations, ICLR, 2017.

Hinton, G. E. and Nair, V. Inferring motor programs from
images of handwritten digits. In Advances in Neural
Information Processing Systems 18, NIPS, 2005.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Hsu, K., Levine, S., and Finn, C. Unsupervised learning
via meta-learning. In 7th International Conference on
Learning Representations, ICLR, 2019.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015.

Isola, P., Zhu, J., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2017.

Jongejan, J., Rowley, H., Kawashima, T., Kim, J., and Fox-
Gieg., N. The quick, draw! - A.I. experiment., 2016.
URL https://quickdraw.withgoogle.com/.

Khodadadeh, S., Bölöni, L., and Shah, M. Unsupervised
meta-learning for few-shot image classification. In Ad-
vances in Neural Information Processing Systems 32,
NeurIPS, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning
Representations, ICLR, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In 2nd International Conference on Learning
Representations, ICLR, 2014.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.
doi: 10.1126/science.aab3050.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. The
omniglot challenge: a 3-year progress report. Current
Opinion in Behavioral Sciences, 29:97–104, Oct 2019.

Lamb, A., Ozair, S., Verma, V., and Ha, D. Sketchtransfer:
A new dataset for exploring detail-invariance and the
abstractions learned by deep networks. In Proceedings
of the IEEE/CVF Winter Conference on Applications of
Computer Vision, WACV, 2020.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, M., Lin, Z. L., Mech, R., Yumer, E., and Ramanan,
D. Photo-sketching: Inferring contour drawings from
images. In IEEE Winter Conference on Applications of
Computer Vision, WACV, 2019.

Liu, D., Nabail, M., Hertzmann, A., and Kalogerakis, E.
Neural contours: Learning to draw lines from 3d shapes.
In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2020.

Marr, D. Vision: A Computational Investigation into the
Human Representation and Processing of Visual Infor-
mation. Henry Holt and Co., Inc., New York, NY, USA,
1982. ISBN 0716715678.

McInnes, L., Healy, J., Saul, N., and Großberger, L. UMAP:
uniform manifold approximation and projection. J. Open
Source Softw., 3(29):861, 2018.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. In
Bengio, Y. and LeCun, Y. (eds.), 1st International Con-
ference on Learning Representations, ICLR, 2013.

Oreshkin, B. N., López, P. R., and Lacoste, A. TADAM:
task dependent adaptive metric for improved few-shot
learning. In Advances in Neural Information Processing
Systems 31, NeurIPS, 2018.

Pandey, A., Mishra, A., Verma, V. K., Mittal, A., and
Murthy, H. A. Stacked adversarial network for zero-
shot sketch based image retrieval. In Proceedings of the
IEEE Winter Conference on Applications of Computer
Vision, WACV, 2020.

Ravi, S. and Larochelle, H. Optimization as a model for
few-shot learning. In 5th International Conference on
Learning Representations, ICLR, 2017.

Reed, S. E., Chen, Y., Paine, T., van den Oord, A., Eslami, S.
M. A., Rezende, D. J., Vinyals, O., and de Freitas, N. Few-
shot autoregressive density estimation: Towards learning
to learn distributions. In 6th International Conference on
Learning Representations, ICLR, 2018.

Rezende, D. J., Mohamed, S., Danihelka, I., Gregor, K.,
and Wierstra, D. One-shot generalization in deep gener-
ative models. In Proceedings of the 33nd International
Conference on Machine Learning, ICML, 2016.

Ribeiro, L. S. F., Bui, T., Collomosse, J., and Ponti,
M. Sketchformer: Transformer-based representation for
sketched structure. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR, 2020.

https://quickdraw.withgoogle.com/


SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for train-
ing gans. In Advances in Neural Information Processing
Systems 29, NIPS, 2016.

Sangkloy, P., Burnell, N., Ham, C., and Hays, J. The sketchy
database: learning to retrieve badly drawn bunnies. ACM
Trans. Graph., 35(4):119:1–119:12, 2016.

Shen, Y., Gu, J., Tang, X., and Zhou, B. Interpreting the
latent space of gans for semantic face editing. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9243–9252, 2020.

Snell, J., Swersky, K., and Zemel, R. S. Prototypical net-
works for few-shot learning. In Advances in Neural In-
formation Processing Systems 30, NIPS, 2017.

Song, J., Pang, K., Song, Y., Xiang, T., and Hospedales,
T. M. Learning to sketch with shortcut cycle consistency.
In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2018.

Tian, L., Ellis, K., Kryven, M., and Tenenbaum, J. Learning
abstract structure for drawing by efficient motor program
induction. Advances in Neural Information Processing
Systems, 33, 2020.

van den Oord, A., Kalchbrenner, N., Espeholt, L.,
Kavukcuoglu, K., Vinyals, O., and Graves, A. Con-
ditional image generation with pixelcnn decoders. In
Advances in Neural Information Processing Systems 29,
NIPS, 2016.

van den Oord, A., Li, Y., and Vinyals, O. Representa-
tion learning with contrastive predictive coding. CoRR,
abs/1807.03748, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30, NIPS, 2017.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Man-
zagol, P. Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local de-
noising criterion. J. Mach. Learn. Res., 11:3371–3408,
2010.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K.,
and Wierstra, D. Matching networks for one shot learning.
In Advances in Neural Information Processing Systems
29, NIPS, 2016.

Yu, Q., Liu, F., Song, Y., Xiang, T., Hospedales, T. M., and
Loy, C. C. Sketch me that shoe. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, 2016.

Zhang, L., Lin, L., Wu, X., Ding, S., and Zhang, L. End-
to-end photo-sketch generation via fully convolutional
representation learning. In Proceedings of the 5th ACM
on International Conference on Multimedia Retrieval,
ICMR, 2015.



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

A. Rasterization
The key enabler of our novel pixel loss for sketch drawings
is our differentiable rasterization function fraster. Sequence
based loss functions such as Lstroke are sensitive to the order
of points while in reality, drawings are sequence invariant.
Visually, a square is a square whether it is drawn clockwise
or counterclockwise.

One purpose of the sketch representation is to lower the
complexity of the data space and decode in a more visually
intuitive manner. While it is a necessary departure point, the
sequential generation of drawings is not key to our visual
representation and we would like SketchEmbedNet to be
agnostic to any specific sequence needed to draw the sketch
that is representative of the image input.

To facilitate this, we develop our rasterization function fraster
which renders an input sequence of strokes as a pixel im-
age. However, during training, the RNN outputs a mixture
of Gaussians at each timestep. To convert this to a stroke
sequence, we sample from these Gaussians; this can be re-
peated to reduce the variance of the pixel loss. We then scale
our predicted and ground truth sequences by the properties
of the latter before rasterization.

Stroke sampling. At the end of sequence generation we
have Ns × (6M + 3) parameters, 6 Gaussian mixture pa-
rameters, 3 pen states, Ns times, one for each stroke. To
obtain the actual drawing we sample from the mixture of
Gaussians:[

∆xt
∆yt

]
=

[
µx,t
µy,t

]
+

[
σx,t 0

ρxy,tσy,t σy,t

√
1− ρ2xy,t

]
ε (7)

ε ∼ N (0,12). (8)

After sampling we compute the cumulative sum of every
stroke over the time so that we obtain an absolute position
at each timestep: [

xt
yt

]
=

T∑
τ=0

[
∆xτ
∆yτ

]
. (9)

yt,abs = (xt, yt, s1, s2, s3). (10)

Sketch scaling. Each sketch generated by our model be-
gins at (0,0) and the variance of all strokes in the training
set is normalized to 1. On a fixed canvas the image is both
very small and localized to the top left corner. We remedy
this by computing a scale λ and shift xshift, yshift using labels
y and apply them to both the prediction y′ as well as the
ground truth y. These parameters are computed as:

λ = min
{

W

xmax − xmin
,

H

ymax − ymin

}
, (11)

xshift =
xmax + xmin

2
λ, yshift =

ymax + ymin

2
λ. (12)

xmax, xmin, ymax, ymin are the minimum and maximum val-
ues of xt, yt from the supervised stroke labels and not the
generated strokes. W and H are the width and height in
pixels of our output canvas.

Calculate pixel intensity. Finally we are able to calculate
the pixel pij intensity of every pixel in our H ×W canvas.

pij = σ

[
2− 5× min

t=1...Ns

(
(13)

dist
(
(i, j), (xt−1, yt−1), (xt, yt)

)
+ (1− bs1,t−1e)106

)]
,

(14)

where the distance function is the distance between point
(i, j) from the line segment defined by the absolute points
(xt−1, yt−1) and (xt, yt). We also blow up any distances
where s1,t−1 < 0.5 so as to not render any strokes where
the pen is not touching the paper.

B. Implementation Details
We train our model for 300k iterations with a batch size of
256 for the Quickdraw dataset and 64 for Sketchy due to
memory constraints. The initial learning rate is 1e-3 which
decays by 0.85 every 15k steps. We use the Adam (Kingma
& Ba, 2015) optimizer and clip gradient values at 1.0.
σ = 2.0 is used for the Gaussian blur in Lpixel. For the
curriculum learning schedule, the value of α is set to 0 ini-
tially and increases by 0.05 every 10k training steps with an
empirically obtained cap at αmax = 0.50 for Quickdraw and
αmax = 0.75 for Sketchy.

The ResNet12 (Oreshkin et al., 2018) encoder uses 4 ResNet
blocks with 64, 128, 256, 512 filters respectively and ReLU
activations. The Conv4 backbone has 4 blocks of convolu-
tion, batch norm (Ioffe & Szegedy, 2015), ReLU and max
pool, identical to Vinyals et al. (2016). We select the latent
space to be 256 dimensions, RNN output size to be 1024,
and the hypernetwork embedding size to be 64. We use
a mixture of M = 30 bivariate Gaussians for the mixture
density output of the stroke offset distribution.

C. Data Processing
C.1. Quickdraw

We apply the same data processing methods as in Ha & Eck
(2018) with no additional changes to produce our stroke
labels y. When rasterizing for our input x, we scale, center
the strokes then pad the image with 10% of the resolution
in that dimension rounded to the nearest integer.



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

The following list of classes were used for training: The Eiffel

Tower, The Mona Lisa, aircraft carrier, alarm clock, ambulance, angel, animal migration, ant, ap-

ple, arm, asparagus, banana, barn, baseball, baseball bat, bathtub, beach, bear, bed, bee, belt, bench,

bicycle, binoculars, bird, blueberry, book, boomerang, bottlecap, bread, bridge, broccoli, broom,

bucket, bulldozer, bus, bush, butterfly, cactus, cake, calculator, calendar, camel, camera, camou-

flage, campfire, candle, cannon, car, carrot, castle, cat, ceiling fan, cell phone, cello, chair, chan-

delier, church, circle, clarinet, clock, coffee cup, computer, cookie, couch, cow, crayon, crocodile,

crown, cruise ship, diamond, dishwasher, diving board, dog, dolphin, donut, door, dragon, dresser,

drill, drums, duck, dumbbell, ear, eye, eyeglasses, face, fan, feather, fence, finger, fire hydrant,

fireplace, firetruck, fish, flamingo, flashlight, flip flops, flower, foot, fork, frog, frying pan, garden,

garden hose, giraffe, goatee, grapes, grass, guitar, hamburger, hand, harp, hat, headphones, hedge-

hog, helicopter, helmet, hockey puck, hockey stick, horse, hospital, hot air balloon, hot dog, hour-

glass, house, house plant, ice cream, key, keyboard, knee, knife, ladder, lantern, leaf, leg, light bulb,

lighter, lighthouse, lightning, line, lipstick, lobster, mailbox, map, marker, matches, megaphone,

mermaid, microphone, microwave, monkey, mosquito, motorbike, mountain, mouse, moustache,

mouth, mushroom, nail, necklace, nose, octopus, onion, oven, owl, paint can, paintbrush, palm

tree, parachute, passport, peanut, pear, pencil, penguin, piano, pickup truck, pig, pineapple, pliers,

police car, pool, popsicle, postcard, purse, rabbit, raccoon, radio, rain, rainbow, rake, remote con-

trol, rhinoceros, river, rollerskates, sailboat, sandwich, saxophone, scissors, see saw, shark, sheep,

shoe, shorts, shovel, sink, skull, sleeping bag, smiley face, snail, snake, snowflake, soccer ball,

speedboat, square, star, steak, stereo, stitches, stop sign, strawberry, streetlight, string bean, subma-

rine, sun, swing set, syringe, t-shirt, table, teapot, teddy-bear, tennis racquet, tent, tiger, toe, tooth,

toothpaste, tractor, traffic light, train, triangle, trombone, truck, trumpet, umbrella, underwear, van,

vase, watermelon, wheel, windmill, wine bottle, wine glass, wristwatch, zigzag, blackberry, power

outlet, peas, hot tub, toothbrush, skateboard, cloud, elbow, bat, pond, compass, elephant, hurri-

cane, jail, school bus, skyscraper, tornado, picture frame, lollipop, spoon, saw, cup, roller coaster,

pants, jacket, rifle, yoga, toilet, waterslide, axe, snowman, bracelet, basket, anvil, octagon, wash-

ing machine, tree, television, bowtie, sweater, backpack, zebra, suitcase, stairs, The Great Wall of

China

C.2. Omniglot

We derive our Omniglot tasks from the stroke dataset origi-
nally provided by Lake et al. (2015) rather than the image
analogues. We translate the Omniglot stroke-by-stroke for-
mat to the same one used in Quickdraw. Then we apply the
Ramer-Douglas-Peucker (Douglas & Peucker, 1973) algo-
rithm with an epsilon value of 2 and normalize variance to
1 to produce y. We also rasterize our images in the same
manner as above for our input x.

C.3. Sketchy

Sketchy data is provided as an SVG image composed of
line paths that are either straight lines or Bezier curves. To
generate stroke data we sample sequences of points from
Bezier curves at a high resolution that we then simplify with
RDP, ε = 5. We also eliminate continuous strokes with a
short path length or small displacement to reduce our stroke
length and remove small and noisy strokes. Path length and
displacement are considered with respect to the scale of the
entire sketch.

Once again we normalize stroke variance and rasterize for
our input image in the same manners as above.

The following classes were use for training after removing
overlapping classes with mini-ImageNet: hot-air balloon, violin, tiger,

eyeglasses, mouse, jack-o-lantern, lobster, teddy bear, teapot, helicopter, duck, wading bird, rab-

bit, penguin, sheep, windmill, piano, jellyfish, table, fan, beetle, cabin, scorpion, scissors, banana,

tank, umbrella, crocodilian, volcano, knife, cup, saxophone, pistol, swan, chicken, sword, seal,

alarm clock, rocket, bicycle, owl, squirrel, hermit crab, horse, spoon, cow, hotdog, camel, turtle,

pizza, spider, songbird, rifle, chair, starfish, tree, airplane, bread, bench, harp, seagull, blimp, ap-

ple, geyser, trumpet, frog, lizard, axe, sea turtle, pretzel, snail, butterfly, bear, ray, wine bottle,

, elephant, raccoon, rhinoceros, door, hat, deer, snake, ape, flower, car (sedan), kangaroo, dol-

phin, hamburger, castle, pineapple, saw, zebra, candle, cannon, racket, church, fish, mushroom,

strawberry, window, sailboat, hourglass, cat, shoe, hedgehog, couch, giraffe, hammer, motorcycle,

shark

D. Pixel-loss Weighting αmax Ablation for
Generation Quality

Table 6: Effect of αmax on classification accuracy of gener-
ated sketches.

αmax 0.00 0.25 0.50 0.75 0.95 1.00

Seen 87.76 87.35 81.44 66.80 36.98 04.80
Unseen 84.02 85.32 77.94 63.10 32.94 04.50

(a) Autoregressive generation.

Input Image

Output Sketch

(b) Teacher-forced generation.
Input Image

Teacher-forced Image

Figure 9: Sketches of SketchEmbedNet trained with αmax =
1.0.

We also ablate the impact of pixel-loss weighting parameter
αmax on the classification accuracy of the ResNet models
from Section 4.5. The evaluation process is the same, gen-
erating sketches of examples from classes that were either
seen during training or new to the model and classifying
them in 45-way classification. Results are shown in Table 6.

Results are only shown for the Quickdraw (Jongejan et al.,
2016) setting. Increasing pixel-loss weighting has a minor
impact on classification accuracy at lower values but has



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

a significant detriment at higher weightings. This is due
to the teacher-forcing training process. As we de-weight
the stroke loss, the model no longer learns to handle the
uncertainty of the input position in the space of the 2D
canvas by predicting a distribution that explains the next
ground truth point. It only matches the generation in pixel
space and no longer generates a sensible stroke trajectory on
the canvas. While training under teacher forcing, this is not
an issue as it is fed the ground truth input point every time,
but in autoregressive this generation quickly degrades as
each step no longer produces the a point that is a meaningful
input for the next time step. We can see the significant
difference between generation quality under techer forcing
and autoregressive generation in Figure 9.

E. Latent Space Interpolation
Like in many encoding-decoding models we evaluate the
interpolation of our latent space. We select 4 embeddings
at random and use bi-linear interpolation to produce new
embeddings. Results are in Figures 10a and 10b.

We observe that compositionality is also present in these
interpolations. In the top row of Figure 10a, the model first
plots a third small circle when interpolating from the 2-circle
power outlet and the 3-circle snowman. This small circle
is treated as single component that grows as it transitions
between classes until it’s final size in the far right snowman
drawing.

Some other RNN-based sketching models (Ha & Eck, 2018;
Chen et al., 2017) experience other classes materializing in
interpolations between two unrelated classes. Our model
does not exhibit this same behaviour as our embedding space
is learned from more classes and thus does not contain local
groupings of classes.

F. Intra-alphabet Lake Split
The creators of the Omniglot dataset and one-shot classi-
fication benchmark originally proposed an intra-alphabet
classification task. This task is more challenging than the
common Vinyals split as characters from the same alpha-
bet may exhibit similar stylistics of sub-components that
makes visual differentiation more difficult. This benchmark
has been less explored by researchers; however, we still
present the performance of our SketchEmbedding-based ap-
proach against other few-shot classification models on the
benchmark. Results are shown in Table 7.

Unsurprisingly, our model is outperformed by supervised
models and does fall behind by a more substantial margin
than in the Vinyals split. However, our method approach
still achieves respectable classification accuracy overall and
greatly outperforms a Conv-VAE baseline.

G. Effect of Random Seeding on Few-Shot
Classification

The training objective for SketchEmbedNetis to reproduce
sketch drawings of the input. This task is unrelated to few-
shot classification may perform variably given different
initialization. We quantify this variance by training our
model with 15 unique random seeds and evaluating the per-
formance of the latent space on the few-shot classification
tasks.

We disregard the per (evaluation) episode variance of our
model in each test stage and only present the mean accuracy.
We then compute a new confidence interval over random
seeds. Results are presented in Tables 8a, 8b.

H. Few-shot Classification on Omniglot – Full
Results.

The full results (Table 9) for few-shot classification on
the Omniglot (Lake et al., 2015) dataset, including the
ResNet12 (Oreshkin et al., 2018) model. We provide re-
sults on SketchEmbedNet trained with a KL objective on
the latent representation. The (w/ Labels) is a model variant
where there is an additional head predicting the class from
the latent representation while sketching the class. This was
to hopefully learn a more discriminative embedding, except
it lowered classification accuracy.

I. Few-shot Classification on mini-ImageNet –
Full Results

The full results (Table 10) for few-shot classification on the
mini-ImageNet dataset, including the ResNet12 (Oreshkin
et al., 2018) model and Conv4 models.



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

(a) Interpolation of classes: power outlet, snowman, jacket, elbow. (b) Interpolation of classes: cloud, power outlet, basket, compass.

Figure 10: Latent space interpolations of randomly selected examples.

Table 7: Few-shot classification results on Omniglot (Lake split).

Omniglot (Lake split) (way, shot)

Algorithm Backbone Train Data (5,1) (5,5) (20,1) (20,5)

Conv-VAE Conv4 Quickdraw 73.12 ± 0.58 88.50 ± 0.39 53.45 ± 0.51 73.62 ± 0.48

SketchEmbedNet (Ours) Conv4 Quickdraw 89.16 ± 0.41 97.12 ± 0.18 74.24 ± 0.48 89.87 ± 0.25
SketchEmbedNet (Ours) ResNet12 Quickdraw 91.03 ± 0.37 97.91 ± 0.15 77.94 ± 0.44 92.49 ± 0.21

BPL (Supervised) (Lake et al., 2015; 2019) N/A Omniglot - - 96.70 -
ProtoNet (Supervised) (Snell et al., 2017; Lake et al., 2019) Conv4 Omniglot - - 86.30 -
RCN (Supervised) (George et al., 2017; Lake et al., 2019) N/A Omniglot - - 92.70 -
VHE (Supervised) (Hewitt et al., 2018; Lake et al., 2019) N/A Omniglot - - 81.30 -

Table 8: Few-shot classification random seeding experiments.

(a) Omniglot (Conv4).

(way, shot)

Seed (5,1) (5,5) (20,1) (20,5)

1 96.45 99.41 90.84 98.08
2 96.54 99.48 90.82 98.10
3 96.23 99.40 90.05 97.94
4 96.15 99.46 90.50 97.99
5 96.21 99.40 90.54 98.10
6 96.08 99.43 90.20 97.93
7 96.19 99.39 90.70 98.05
8 96.68 99.44 91.11 98.18
9 96.49 99.42 90.64 98.06
10 96.37 99.47 90.50 97.99
11 96.52 99.40 91.13 98.18
12 96.96 99.50 91.67 98.30
13 96.31 99.38 90.57 98.04
14 96.12 99.45 90.54 98.03
15 96.30 99.48 90.62 98.05

Average 96.37 ± 0.12 99.43 ± 0.02 90.69 ± 0.20 98.07 ± 0.05

(b) mini-ImageNet.

(way, shot)

Seed (5,1) (5,5) (5,20) (5,50)

1 37.15 52.99 63.92 68.72
2 39.38 55.20 65.60 69.79
3 39.40 55.47 65.94 70.41
4 40.39 57.15 67.60 71.99
5 38.40 54.08 65.36 70.08
6 37.94 53.98 65.24 69.65
7 38.88 55.71 66.59 71.35
8 37.89 52.65 63.42 68.14
9 38.25 53.86 65.02 69.82

10 39.11 55.29 65.99 69.98
11 37.39 52.88 63.66 68.33
12 38.24 53.91 65.19 69.82
13 38.62 53.84 63.83 68.69
14 37.73 53.61 64.22 68.41
15 39.50 55.23 65.51 70.25

Average 38.55 ± 0.45 54.39 ± 0.63 65.14 ± 0.59 69.69 ± 0.56



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

Table 9: Full table of few-shot classification results on Omniglot.

Omniglot (way, shot)

Algorithm Backbone Train Data (5,1) (5,5) (20,1) (20,5)

Training from Scratch (Hsu et al., 2019) N/A Omniglot 52.50 ± 0.84 74.78 ± 0.69 24.91 ± 0.33 47.62 ± 0.44

Random CNN Conv4 N/A 67.96 ± 0.44 83.85 ± 0.31 44.39 ± 0.23 60.87 ± 0.22
Conv-VAE Conv4 Omniglot 77.83 ± 0.41 92.91 ± 0.19 62.59 ± 0.24 84.01 ± 0.15
Conv-VAE Conv4 Quickdraw 81.49 ± 0.39 94.09 ± 0.17 66.24 ± 0.23 86.02 ± 0.14
Conv-AE Conv4 Quickdraw 81.54 ± 0.40 93.57 ± 0.19 67.24 ± 0.24 84.15 ± 0.16
β-VAE (β = 250) (Higgins et al., 2017) Conv4 Quickdraw 79.11 ± 0.40 93.23 ± 0.19 63.67 ± 0.24 84.92 ± 0.15
k-NN (Hsu et al., 2019) N/A Omniglot 57.46 ± 1.35 81.16 ± 0.57 39.73 ± 0.38 66.38 ± 0.36
Linear Classifier (Hsu et al., 2019) N/A Omniglot 61.08 ± 1.32 81.82 ± 0.58 43.20 ± 0.69 66.33 ± 0.36
MLP + Dropout (Hsu et al., 2019) N/A Omniglot 51.95 ± 0.82 77.20 ± 0.65 30.65 ± 0.39 58.62 ± 0.41
Cluster Matching (Hsu et al., 2019) N/A Omniglot 54.94 ± 0.85 71.09 ± 0.77 32.19 ± 0.40 45.93 ± 0.40
CACTUs-MAML (Hsu et al., 2019) Conv4 Omniglot 68.84 ± 0.80 87.78 ± 0.50 48.09 ± 0.41 73.36 ± 0.34
CACTUs-ProtoNet (Hsu et al., 2019) Conv4 Omniglot 68.12 ± 0.84 83.58 ± 0.61 47.75 ± 0.43 66.27 ± 0.37
AAL-ProtoNet (Antoniou & Storkey, 2019) Conv4 Omniglot 84.66 ± 0.70 88.41 ± 0.27 68.79 ± 1.03 74.05 ± 0.46
AAL-MAML (Antoniou & Storkey, 2019) Conv4 Omniglot 88.40 ± 0.75 98.00 ± 0.32 70.20 ± 0.86 88.30 ± 1.22
UMTRA (Khodadadeh et al., 2019) Conv4 Omniglot 83.80 95.43 74.25 92.12

Contrastive Conv4 Omniglot* 77.69 ± 0.40 92.62 ± 0.20 62.99 ± 0.25 83.70 ± 0.16
SketchEmbedNet (Ours) Conv4 Omniglot* 94.88 ± 0.22 99.01 ± 0.08 86.18 ± 0.18 96.69 ± 0.07
Contrastive Conv4 Quickdraw* 83.26 ± 0.40 94.16 ± 0.21 73.01 ± 0.25 86.66 ± 0.17
SketchEmbedNet-avg (Ours) Conv4 Quickdraw* 96.37 99.43 90.69 98.07
SketchEmbedNet-best (Ours) Conv4 Quickdraw* 96.96 ± 0.17 99.50 ± 0.06 91.67 ± 0.14 98.30 ± 0.05
SketchEmbedNet-avg (Ours) ResNet12 Quickdraw* 96.00 99.51 89.88 98.27
SketchEmbedNet-best (Ours) ResNet12 Quickdraw* 96.61 ± 0.19 99.58 ± 0.06 91.25 ± 0.15 98.58 ± 0.05

SketchEmbedNet(KL)-avg (Ours) Conv4 Quickdraw* 96.06 99.40 89.83 97.92
SketchEmbedNet(KL)-best (Ours) Conv4 Quickdraw* 96.60 ± 0.18 99.46 ± 0.06 90.84 ± 0.15 98.09 ± 0.06

SketchEmbedNet (w/ Labels) (Ours) Conv4 Quickdraw* 88.52 ± 0.34 96.73 ± 0.13 71.35 ± 0.24 88.16 ± 0.14

MAML (Supervised) (Finn et al., 2017) Conv4 Omniglot 94.46 ± 0.35 98.83 ± 0.12 84.60 ± 0.32 96.29 ± 0.13
ProtoNet (Supervised) (Snell et al., 2017) Conv4 Omniglot 98.35 ± 0.22 99.58 ± 0.09 95.31 ± 0.18 98.81 ± 0.07

* Sequential sketch supervision used for training

Table 10: Full table of few-shot classification results on mini-ImageNet.

mini-ImageNet (way, shot)

Algorithm Backbone Train Data (5,1) (5,5) (5,20) (5,50)

Training from Scratch (Hsu et al., 2019) N/A mini-ImageNet 27.59 ± 0.59 38.48 ± 0.66 51.53 ± 0.72 59.63 ± 0.74

UMTRA (Khodadadeh et al., 2019) Conv4 mini-ImageNet 39.93 50.73 61.11 67.15
CACTUs-MAML (Hsu et al., 2019) Conv4 mini-ImageNet 39.90 ± 0.74 53.97 ± 0.70 63.84 ± 0.70 69.64 ± 0.63
CACTUs-ProtoNet (Hsu et al., 2019) Conv4 mini-ImageNet 39.18 ± 0.71 53.36 ± 0.70 61.54 ± 0.68 63.55 ± 0.64
AAL-ProtoNet (Antoniou & Storkey, 2019) Conv4 mini-ImageNet 37.67 ± 0.39 40.29 ± 0.68 - -
AAL-MAML (Antoniou & Storkey, 2019) Conv4 mini-ImageNet 34.57 ± 0.74 49.18 ± 0.47 - -
Random CNN Conv4 N/A 26.85 ± 0.31 33.37 ± 0.32 38.51 ± 0.28 41.41 ± 0.28
Conv-VAE Conv4 mini-ImageNet 23.30 ± 0.21 26.22 ± 0.20 29.93 ± 0.21 32.57 ± 0.20
Conv-VAE Conv4 Sketchy 23.27 ± 0.18 26.28 ± 0.19 30.41 ± 0.19 33.97 ± 0.19
Random CNN ResNet12 N/A 28.59 ± 0.34 35.91 ± 0.34 41.31 ± 0.33 44.07 ± 0.31
Conv-VAE ResNet12 mini-ImageNet 23.82 ± 0.23 28.16 ± 0.25 33.64 ± 0.27 37.81 ± 0.27
Conv-VAE ResNet12 Sketchy 24.61 ± 0.23 28.85 ± 0.23 35.72 ± 0.27 40.44 ± 0.28

Contrastive ResNet12 Sketchy* 30.56 ± 0.33 39.06 ± 0.33 45.17 ± 0.33 47.84 ± 0.32
SketchEmbedNet-avg (ours) Conv4 Sketchy* 37.01 51.49 61.41 65.75
SketchEmbedNet-best (ours) Conv4 Sketchy* 38.61 ± 0.42 53.82 ± 0.41 63.34 ± 0.35 67.22 ± 0.32
SketchEmbedNet-avg (ours) ResNet12 Sketchy* 38.55 54.39 65.14 69.70
SketchEmbedNet-best (ours) ResNet12 Sketchy* 40.39 ± 0.44 57.15 ± 0.38 67.60 ± 0.33 71.99 ± 0.3

MAML (supervised) (Finn et al., 2017) Conv4 mini-ImageNet 46.81 ± 0.77 62.13 ± 0.72 71.03 ± 0.69 75.54 ± 0.62
ProtoNet (supervised) (Snell et al., 2017) Conv4 mini-ImageNet 46.56 ± 0.76 62.29 ± 0.71 70.05 ± 0.65 72.04 ± 0.60

* Sequential sketch supervision used for training


	Introduction
	Related Work
	Learning to Imitate Drawings
	Data representation
	Convolutional image embeddings
	Autoregressive decoding of sketches
	Training objectives

	Experiments
	Training by drawing imitation
	Few-Shot Classification using SketchEmbeddings
	Intra-Dataset Classification
	Emergent properties of SketchEmbeddings
	Evaluating generation quality

	Conclusion
	Rasterization
	Implementation Details
	Data Processing
	Quickdraw
	Omniglot
	Sketchy

	Pixel-loss Weighting max Ablation for Generation Quality
	Latent Space Interpolation
	Intra-alphabet Lake Split
	Effect of Random Seeding on Few-Shot Classification
	Few-shot Classification on Omniglot – Full Results.
	Few-shot Classification on mini-ImageNet – Full Results

