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Abstract

Many online-learning domains in artificial intelligence involve data with nonsta-
tionarities spanning a wide range of timescales. Heuristic approaches to combat
nonstationarity include retraining models frequently with only the freshest data
and using iterative gradient-based updating methods that implicitly discount older
data. We propose an alternative approach based on Bayesian inference over 1/f
noise. The method is cast as a Kalman filter that posits latent variables with various
characteristic timescales and maintains a joint posterior over them. We also derive
a variational approximation that tracks these variables independently. The varia-
tional method can be implemented as a drop-in optimizer for any neural network
architecture, which works by decomposing each weight as a sum of subweights
with different decay rates. We test these methods on two synthetic, online-learning
tasks with environmental parameters varying across time according to 1/f noise.
Baseline methods based on bounded memory show a nonmonotonic relationship
between memory horizon and performance, a signature of data going “stale.” The
Bayesian and variational methods perform significantly better by leveraging all
past data and performing appropriate inference at all timescales.

Many online tasks facing both biological and artificial intelligence systems involve changes in data
distribution over time. In machine learning, this situation often manifests as poorer generalization
performance on future data versus on held-out data from within the training interval. Common
solutions are to train on a window of fixed length (to exclude older “stale” data) or stochastic gradient
descent (SGD) with fixed learning rate and weight decay, so that older data are less influential
[DRAP15]. Here we demonstrate that performance can be significantly improved by retaining all
data and using a learning model that reflects the temporal structure of the environment.

Methods based on SGD or temporal-difference learning with constant learning rates implicitly
assume a dynamic environment, but following a random walk or diffusion process that exhibits
only short-range correlations (see Appendix B). In contrast, real environments, both natural and
human-constructed, tend to have correlations at a wide range of temporal and spatial scales, as often
modeled by the 1/f noise family of stochastic processes [Kes82]. We argue that such structure can
be exploited by building it into existing learning methods.

We develop a family of Bayesian models in which the prior (as a stochastic process) is defined by
1/f noise, represented as a sum of diffusion processes at different timescales (Appendix A). This
generative model reflects an assumption that natural environments comprise a variety of events with
different magnitudes and durations. Exact Bayesian inference is possible using a Kalman filter
(KF) that tracks the component processes jointly [KTS07]. When learning a single environmental
parameter θ, such as mean reward for some action in a bandit task, this amounts to modeling
θ =

∑n
i=1 zi, where each zi is a stochastic process with a different characteristic timescale τi, and

doing joint inference over Z = (z1, . . . , zn).
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We then generalize this approach to an arbitrary statistical model, h (x,θ), where x is the input and
θ ∈ Rm is a latent parameter vector to be estimated. For instance, h might be a neural network
(NN) with parameters θ. Our Bayesian model places a 1/f prior on θ (as a stochastic process),
by assuming θ(t) =

∑n
i=1 zi(t) for diffusion processes zi ∈ Rm with respective characteristic

timescales τi. We then do inference over the joint state Z = (z1, . . . ,zn), by extending the exact
Bayesian KF above to an extended Kalman filter (EKF) that linearizes h by calculating its Jacobian at
each step [SW89, PF03]. Next, we derive a variational approximation to the EKF that constrains the
covariance matrix to be diagonal. The variational approximation admits an interpretation wherein each
weight estimate wj , defined as the current prior mean of θj , is decomposed as a sum of subweights,
wj =

∑
i ωij (i indexing timescales and j indexing weights in the network). The subweights are

learned independently, each with a different learning rate and decay rate determined by τi. This can
be seen as a new variation of fast-weight methods [HP87, BHM+16], involving many timescales and
grounded in a Bayesian interpretation as inference over 1/f noise. The result can serve as a drop-in
replacement for other neural network optimizers, and is sensitive to 1/f -type temporal structure.

We test the KF-based methods in synthetic online learning tasks (Sections 2 and 3), where the latent
parameters vary over time according to 1/f noise. An important caveat is that the task domains are
matched to the Bayesian model in that the data are generated using the same sum-of-diffusion process
that the model assumes. Notwithstanding this, we test robustness by using a different set of timescales
for sampling versus inference (see Appendix F) and, in Section 3, a sampling process that mismatches
the NN architecture. Results show that the Bayesian methods (KF and EKF) outperform heuristic
methods of windowing or online SGD, demonstrating the value of modeling temporal structure. We
also find that the variational approximation performs nearly as well as the full model, which speaks
to the feasibility of this approach in contemporary applications of large NNs.

1 Bayesian inference over 1/f noise

Let zi(t) be an Ornstein-Uhlenbeck process (i.e., diffusion with decay), with timescale or inverse
decay rate τi and diffusion rate σ2

i , defined by the following stochastic differential equation:

dzi = −τ−1i z dt+ σi dW. (1)

Here W (t) is a standard Wiener process (Brownian motion). For a chosen ν > 1, define τi = νi and
σi = ν−i/2, and choose n so that τn is vey large. We show in Appendix A that the summed process,

ξ(t) =

n∑
i=1

zi(t), (2)

has a power spectrum that is well approximated by 1/f , for frequencies f � τ−1n . Moreover,
m independent copies of this process constitute m-dimensional 1/f noise, due to the rotational
invariance of multidimensional Ornstein-Uhlenbeck processes.

Note that Z = (z1, . . . , zn) is a linear dynamic system, with linear observation model ξ. Thus if
observations are made at discrete intervals, say y(t) = ξ(t) for t ∈ N, then optimal Bayesian online
prediction of each y(t) based on all preceding observations is implemented by a KF over Z [KTS07].

This framework suggests a method for statistical optimization, including training NNs, in nonstation-
ary domains. Assume we receive observations x(t), y(t) that we wish to explain using a model h
with latent parameters θ ∈ Rm. For example, h may be a NN with weights θ, input x, and output y:

y(t) = h(x(t),θ(t)). (3)

Building on h, we define a Bayesian model that makes the generative assumption θ =
∑n
i=1 zi,

where each zi is an Ornstein-Uhlenbeck process in Rm with timescale τi, so that θ follows a 1/f
process. We then define the latent state Z = (z1, . . . ,zn) ∈ Rnm and do inference over Z.

When h is linear in θ (and hence in Z), as in the regression task and one-layer perceptron of Section
2, exact inference is possible with a standard KF (Appendix C). For a general h, such as a multilayer
NN, we use an EKF (Appendix D). The EKF makes a local linear approximation of h based on its
Jacobian, the matrix of gradients of predictions ŷ with respect to θ. We use Ollivier’s generalization
of the EKF [Oll18] that replaces Gaussian observation noise with any exponential family p(y|ŷ),
which is better suited for modeling discrete outcomes such as the classification task of Section 3.
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Figure 1: Regression task with 1/f dynamics. Loss is squared error. A: Batch learner. B: Stochastic
gradient descent. C: Model comparison.

Finally, we derive a variational approximation of the EKF, suitable for efficient implementation in
large NNs. Recall that a KF or EKF maintains an iterative prior based on all previous observations:

Z(t)|x<t,y<t ∼ N (ω(t),S(t)). (4)

The mean, ω(t), is the vector of current subweight estimates in the network, while S(t) captures
their joint uncertainty and hence determines updates (as a preconditioner). We approximate this
distribution by one in which S(t) ≈ S̃(t), where S̃(t) is constrained to be diagonal (Appendix E).
This reduces the complexity from O(m2n2) to O(mnk) (the size of the Jacobian, where k is the
size of the output layer). Under this approximation, each ωij is updated independently, based on
the current loss gradient. Thus the variational method amounts to decomposing every weight in the
network as a sum of subweights, wj =

∑
i ωij , with decay rates τi and learning rates coming from

S̃(t). Note that this multiplexing is not expensive relative to current optimizers (e.g., Adam [KB15]),
which also store multiple variables for each weight.

2 Regression task

As a simple demonstration, we created a linear regression task with 10 features (including a bias term),
in which the true weights β varied over time according to 1/f noise. The outcome was generated as
y = x>β (no noise term was needed because β is inherently noisy). The corresponding predictive
model is a one-layer perceptron, which we write as ŷ = x>w to distinguish weight estimates from
true parameters. We model the data using the perceptron and compare methods for optimization.

We tested two baseline training methods, representing common heuristic practices with nonstationary
data [DRAP15, PKP+19]. First, we tested a batch model that uses a fixed memory horizon H . To
generate a prediction on step t, the batch learner fits the perceptron to trials t −H through t − 1.
Figure 1A shows performance is U-shaped: accuracy suffers with short horizons because of sampling
error, but it also suffers from longer horizons because older observations are less valid. Second,
we tested SGD, in which the weights are updated once after each step t, based on x(t) and y(t).
Figure 1B shows performance is best with an intermediate learning rate, which roughly corresponds
to assuming the environment changes on a single characteristic timescale (see Appendix B).

As applied to the perceptron, the Bayesian 1/f model described in Section 1 decomposes the weight
for each feature j into subweights, wj =

∑
i ωij , and tracks the ωij jointly with a KF (generalizing

[DK00]). The subweights combine to predict the outcome on each step: ŷ(t) =
∑
ij xiωij . Relative

to blind prediction (guessing the overall mean of y on every trial), this exact Bayesian solution
explains 54.0% more variance in the outcome than the best batch learner, and 25.7% more than the
best parameterization of SGD (Figure 1C). Moreover, the variational model that constrains the KF
covariance matrix to be diagonal performs nearly (96.9%) as well as the full Bayesian model.

Finally, we tested a discounting method, similar to the batch learner except all past trials were
used for training, discounted by a function of lag. Because the 1/f environment has power-law
correlations, we weighted each observation t − k by k−a and optimized a. This method also
significantly outperforms windowed batch and SGD, showing that accounting for an environment’s
autocorrelation function can achieve much of the advantage of the Bayesian approach. Nevertheless,
the full KF and variational methods still outperform discounting, by 5.5% and 2.2% respectively.
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Figure 2: Classification task with 1/f dynamics. Loss is negative log-likelihood. A: Batch learner.
B: Stochastic gradient descent. C: Model comparison.

3 Classification task

Next, we investigated a 10-way classification task with 10 features (including a bias term). The data
were generated by first sampling the class, y(t) ∼ softmax(e(t)), and then sampling the feature
vector, x(t)|y(t) ∼ N (µy(t), I). The logits ej and the feature-class means µij were independently
sampled from 1/f processes, so that there was nonstationarity in both p(y) and p(x|y). Scaling of e
and µ was chosen to equate maximum possible performance based on perfect knowledge of either
one alone (both yielding average loss L̄ ≈ 1). For the predictive model, we used a perceptron with a
softmax output layer: ŷ = softmax(x>W ), whereW is a matrix of learnable feature-class weights.

The batch method trained the network on trials t−H through t−1 until convergence before predicting
y(t). Weight decay was included for regularization, with the decay rate optimized for each value of
H . Figure 2A shows a U-shaped pattern of performance, reflecting the tradeoff between sampling
error and stale data. We also used weight decay with SGD, optimized for each learning rate. Figure
2B again shows a U-shaped pattern of performance.

The variational EKF uses a local linear approximation of the network, ∂ŷ
∂w , and the variance of

T (y) conditioned on ŷ (where T (y) is a one-hot encoding) as inputs to the standard KF update
equations (see Appendix E.3). We enforce the diagonal approximation of the covariance matrix when
calculating the posterior after each observation. The optimal approximation uses the diagonal of the
precision matrix but can be calculated without matrix inversion, which is relevant to scaling up to
large networks. We also applied `2 regularization to the prior for the next timestep, on par with the
SGD and batch methods. Figure 2C shows the variational method outperforms the other two.

4 Conclusions

Our results offer an initial demonstration of how online learning performance in nonstationary envi-
ronments can be improved by incorporating a model of temporal structure. The Bayesian 1/f model
amounts to distributing knowledge across multiple timescales, and the variational approximation
enables implementation in a neural network using subweights with different learning and decay
rates. The latter method is closely related to models of learning at multiple timescales that have been
proposed in psychology and neuroscience [Jon22]. It is also similar to power-law discounting of
past observations, in that a sum of subweights decaying at different exponential rates approximates
power-law decay. Nevertheless, the variational method was seen to perform better, presumably
because of the interaction among subweights (via learning from a shared gradient) that approximates
Bayesian allocation of knowledge to different timescales. Another possible variational method is to
assume a block-diagonal covariance matrix, in which covariance information is maintained between
subweights (timescales) within each weight but not across weights, so that computational complexity
still scales linearly with network size. Follow-up work applying the variational EKF to multilayer
networks trained on real data [JSR+22] further supports the potential of these methods to scale up to
large networks and complex online-learning domains.
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A Generative model for 1/f noise

Consider a single Ornstein-Uhlenbeck (OU) process z(t) described by Equation 1 with σ = 1. The
covariance function of z is given by

E[z(t)z(t+ s)] =

∫ t

−∞
e−(t−t

′)/τe−(t+s−t
′)/τdt′ (5)

=
τ

2
e−s/τ . (6)

Note that this expression decays exponentially with the lag s, yielding short-range autocorrelations.
The power spectrum of z, as a functinon of frequency f , is the Fourier transform of the covariance
function:

Pz(f) =

∫
R

τ

2
e−|s|/τe−2πifsds (7)

=
1

τ−2 + (2πf)2
(8)

where 2πf is angular frequency.

To define a generative model of 1/f noise, we define a continuous mixture model over a family of
OU processes (zτ )0<τ≤T for some large T :

ξ(t) =

∫ T

0

2τ−1zτ (t)dτ. (9)

The power spectrum of y is then a mixture over the component spectra Pzτ :

Py (f) =

∫ T

0

4τ−2Pzτ (f)dτ (10)

=

∫ T

0

4τ−2

τ−2 + (2πf)
2 dτ (11)

=
2

πf
tan−1(2πfT ) (12)

which is approximately 1/f for f � 1/T , i.e. for all but very low frequencies.

We next define a discrete approximation of the continuum mixture model in Equation 9,

ξ(t) =
∑
i

zi(t), (13)

where zi has timescale τi and scaling parameter σi. To approximate a 1/f spectrum, σ2
i (τi+1− τi)−1

should scale as 4τ−2i , the squared weight density in Equation 9 (because power is additive and
proportional to σ2). For example, the τi could be arithmetically spaced with σi ∝ τ−1. Instead, we
assume geometric spacing, with n components defined by τi = νi and σi = 2ρτ

−1/2
i , where ρ2 is a

hyperparameter determining overall steady-state variance. Figure 3 illustrates this construction and
exemplifies the accuracy of the discrete approximation.

To define a generative model of 1/f noise in Rm, we assume an independent copy of this process for
each dimension. The resulting joint process is rotationally symmetric, a property inherited from OU
processes. That is, any linear combination

∑
j cjξj is a 1d 1/f process.

B Kalman filter for a single timescale

Start again with a single OU process z with σ = 1, and assume it is observed at unit intervals (yt)t∈N
with Gaussian observation noise of variance η2. Assume a conjugate iterative prior:

z(t)|y<t ∼ N
(
w(t), s2(t)

)
. (14)
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The posterior after each observation is

z(t)|y≤t ∼ N
(
η2w(t) + s2(t)y(t)

s2(t) + η2
,
s2(t)η2

s2(t) + η2

)
. (15)

Evolving the process to time t+ 1 amounts to decay by e−1/τ and accumulation of new noise. At
each time t′ ∈ [t, t+ 1], variance from the noise appearing at time t′ (i.e., from dW (t′) in Equation
1) decays by a factor e−2(t+1−t′)/τ by time t+ 1. Therefore the total accumulated variance is:∫ t+1

t

e−2(t+1−t′)/τdt′ =
τ

2

(
1− e−2/τ

)
. (16)

Therefore the prior for the next observation is

z(t+ 1)|y≤t ∼ N
(
e−1/τ

η2w(t) + s2(t)y(t)

s2(t) + η2
, e−2/τ

s2(t)η2

s2(t) + η2
+
τ

2

(
1− e−2/τ

))
(17)

= N
(
w(t+ 1), s2(t+ 1)

)
. (18)

We thus obtain the recursion

w(t+ 1) = e−1/τ
η2w(t) + s2(t)y(t)

s2(t) + η2
(19)

= e−1/τ (w(t) + α(t)(y(t)− w(t))) . (20)

This is a temporal-difference learning rule, or gradient descent on squared error 1
2 (y(t)−w(t)), with

learning rate α(t) = s2(t)
s2(t)+η2 . This connection between temporal-difference learning and the Kalman

filter is well known [Sut92].

The steady state for s2 is given by the solution to s2(t) = s2(t+ 1), a quadratic with one positive
root. If s2(0) is initialized to this value, then α(t) will be constant. Note that this algorithm (and the
extension to 1/f noise in Appendix C) generalizes to irregularly spaced observations, in which case
one can derive how the optimal learning rate should vary on each step.

C Kalman filter over 1/f noise

Assume we receive a sequence of observations at unit time intervals, y(t) for t ∈ N, and we want
to do online prediction under the assumption that y is a 1/f noise process. Then we can make the
generative assumption y(t) = ξ(t) with ξ defined as at the end of Appendix A. For simplicity and in
contrast to Appendix B, we assume no observation noise, because the shortest timescales (z1, etc.)
already play this role.
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Because y(t) is conditionally independent of the history given (and indeed is fully determined by)
the joint state Z(t) = (z1(t), . . . , zn(t)), it suffices to compute the posterior for the latter. Write the
iterative prior for Z as

Z(t)|y<t ∼ N (ω(t),S(t)) , (21)

implying an optimal (maximum-likelihood or least-squares) prediction of ŷ(t) =
∑
i ωi(t). The

posterior after observing y(t) is the intersection of the prior with the hyperplane
∑
i zi(t) = y(t):

Z(t)|y≤t ∼ N
(
ω(t) +

S(t)1

1>S(t)1
(y(t)− ŷ(t)),

(
PS(t)−1P + 11>

)−1
P

)
. (22)

Here, 1 is the vector with all elements equal to 1, and P = I − 1
n11

> is the orthogonal projector.

The prior for the next timestep is then obtained by applying decay and adding variance from the noise
accumulated over the intervening interval. DefineD as the diagonal matrix of decay factors, e−1/τi ,
andN as the diagonal matrix of added noise 2ρ2(1− e−2/τi), obtained by multiplying the RHS of
Equation 16 by σ2

i = 4ρ2τ−1i (from Appendix A). Then we have the update equations for the exact
Bayesian model:

ω(t+ 1) = D

(
ω(t) +

S(t)1

1>S(t)1
(y(t)− ŷ(t))

)
(23)

and

S(t+ 1) = D
(
PS(t)−1P + 11>

)−1
PD +N . (24)

Next, consider the perceptron in Section 2, where y = x>θ. The 1/f generative model assumes
θj =

∑
i zij for each j, where i indexes timescales and j indexes features, and zij has timescale τi

and scaling parameter σi defined as above. The latent state is described by Z = (zij)ij . We treat ij
as a single composite index, so that Z is a vector. As above, write the iterative prior as

Z(t)|x<t,y<t ∼ N (ω(t),S(t)) . (25)

LetX be a multiplexed copy of the input x, so thatXij = xj . Assuming square loss, the optimal
prediction for y(t) is ŷ(t) = X(t)>ω(t). The posterior after observing y(t) is the intersection of the
prior with the hyperplaneX(t)>Z(t) = y(t):

Z(t)|x≤t,y≤t ∼ N
(
ω(t) +

S(t)X(t)

X(t)>S(t)X(t)
(y(t)− ŷ(t)),(

PX(t)S(t)−1PX(t) +X(t)X(t)>
)−1

PX(t)

)
, (26)

where PX = I −XX>/X>X is the projector orthogonal toX .

Generalizing the definitions above, letD andN be the diagonal matrices of decay factors and noise
accumulation, Dij,ij = e−1/τi and Nij,ij = 2ρ2(1 − e−2/τi). Applying these to Equation 26 to
obtain the prior for the next time step yields the update equations for the exact Bayesian model of the
regression task:

ω(t+ 1) = D

(
ω(t) +

S(t)X(t)

X(t)>S(t)X(t)
(y(t)− ŷ(t))

)
(27)

S(t+ 1) = D
(
PX(t)S

−1(t)PX(t) +X(t)X(t)>
)−1

PX(t)D +N . (28)

Equation 27 exemplifies how the variance matrix, S(t), can be thought of as defining a preconditioner
of the gradient,X(t)(y(t)− ŷ(t)).

D Extended Kalman filter

Given a nonlinear model h(x,θ), the 1/f EKF posits that the optimal parameters follow 1/f
dynamics according to θ =

∑n
i=1 zi, with expanded latent stateZ = (z1, . . . ,zn)>. It is convenient
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to introduce the expanded model h̃ defined by h̃(x,Z) = h(x,
∑
i zi). The 1/f EKF maintains an

iterative prior over Z as in Equation 25 and updates that prior by linearizing h̃ about Z = ω(t):

h̃(x(t),Z) ≈ h̃(x(t),ω(t)) + Jh̃(Z − ω(t)). (29)

Here, Jh̃ = ∂ŷ
∂Z is the Jacobian matrix of h̃, evaluated at Z = ω(t). Note that Jh̃ is just n copies of

Jh.

Following [Oll18], we assume the observation y is governed by some exponential family P (y|η(ŷ)),
with vector of sufficient statistics T (y). The model’s output ŷ = h̃(x,ω) is taken to encode the
predicted mean parameter of that family: ŷ = Ey∼P (·|η(ŷ)) [T (y)] (this can be read as a definition of
the mapping ŷ 7→ η(ŷ)). It then approximates the conditional distribution of the sufficient statistics
as a Gaussian,

p(T (y)|ŷ) ≈ N (ŷ,Rŷ) , (30)

whereRŷ = Var (T (y)|ŷ) is the conditional variance.

For example, when h is the 2-layer (perceptron+softmax) network in Section 3, the output of the
network is a vector ŷ of class probabilities, and the sufficient statistics T (y) are a one-hot vector. For
numerical stability, we exclude the final element of ŷ and T (y), which are determined by the other
elements. The conditional outcome variance is given by

[Rŷ]i,j =

{
ŷi(1− ŷi) i = j

−ŷiŷj i 6= j.
(31)

Under the approximations of Equations 29 and 30, the posterior is given by the standard KF formula:

Z(t)|x≤t,y≤t ∼ N
(
ω(t) + S(t)J>

h̃

(
Jh̃S(t)J>

h̃
+Rŷ(t)

)−1
(T (y(t))− ŷ(t)),

S(t)− S(t)J>
h̃

(
Jh̃S(t)J>

h̃
+Rŷ(t)

)−1
Jh̃S(t)

)
. (32)

Applying decay (D) and accumulated noise (N ) as in Appendix C to obtain the prior for the next
time step yields the update equations for the 1/f EKF:

ω(t+ 1) = D
(
ω(t) + S(t)J>

h̃

(
Jh̃S(t)J>

h̃
+Rŷ(t)

)−1
(T (y(t))− ŷ(t))

)
(33)

S(t+ 1) = D
(
S(t)− S(t)J>

h̃

(
Jh̃S(t)J>

h̃
+Rŷ(t)

)−1
Jh̃S(t)

)
D +N . (34)

E Variational approximation

This section derives variational approximations of the KF and EKF models, with S(t) ≈ S̃(t) where
S̃(t) := diag(s2(t)). Thus the resulting algorithms need only track the individual variance terms
in s(t) rather than the full covariance matrix. Moreover, the update equations (41,42,46,47,52,55)
all avoid matrix inversion—even though this might initially seem necessary from Equation 35—a
property that may be relevant for efficient scaling.

E.1 Uncued inference

We begin with the simple Bayesian 1/f model in Equations 23 and 24, where there are no predictors
and the model merely tracks an observable y(t). Given an arbitrary Gaussian distribution, the varia-
tional approximation (in the sense of minimizing Kullback-Leibler divergence) by another Gaussian
with diagonal covariance matrix is obtained by taking the diagonal of the original distribution’s
precision matrix. Thus in the present case we have

s−2i (t+ 1) =
[
S−1(t+ 1)

]
i,i

(35)

where S(t+ 1) is given by Equation 24 with S−1(t) replaced by S̃−1(t) (the inductive assumption).
To calculate S−1(t+ 1) under this assumption, we first observe the identity(

P diag
(
s−2

)
P + 11>

)−1
P = diag

(
s2
)
− s

2s2
>∑

i s
2
i

. (36)
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Therefore Equation 24 becomes

S(t+ 1) = DS̃(t)D +N − (Ds2(t))(Ds2(t))>∑
i s

2
i (t)

(37)

:= diag(a)− bb
>

c
(38)

where diag(a) = DS̃(t)D +N , b = Ds2(t), and c =
∑
i s

2
i (t). We next use the identity(

diag (a)− bb
>

c

)−1
= diag

(
1√
a

)I +

(
a−1/2 ◦ b

) (
a−1/2 ◦ b

)>
c−

∑ b2i
ai

diag

(
1√
a

)
, (39)

implying the diagonal elements are[(
diag(a)− bb

>

c

)−1]
i,i

=
1

ai

1 +

b2i
ai

c−
∑
i′
b2
i′
ai′

 . (40)

Combining Equations 35, 38, and 40 gives the final form of the variational update:

s2i (t+ 1) =

(
s2i (t)e

−1/τi + 4ρ2 sinh 1
τi

)2
Ω(

s2i (t) + 4ρ2e1/τi sinh 1
τi

)
Ω + s4i (t)

(41)

with

Ω =
∑
i

4ρ2s2i (t) sinh 1
τi

e−1/τis2i (t) + 4ρ2 sinh 1
τi

. (42)

This update of the variance converges exponentially to a unique fixed point. Numerical simulations
confirm that, in this limit, s2i is larger for smaller τi, meaning faster learning rates for shorter
timescales. If the prior variances are initialized at the fixed point then they are constant throughout
learning.

By substituting the diagonal matrix S̃(t) for S(t), the update for the mean in Equation 23 simplifies
to

ωi(t+ 1) = e−1/τiωi(t)− αi(t) (ŷ(t)− y(t)) (43)

where ŷ(t)− y(t) is the loss gradient (assuming square loss), and the learning rates are given by

αi(t) =
e−1/τis2i (t)∑

i′ s
2
i′(t)

. (44)

That is, the subweights learn independently according to their gradients, with different decay rates
and learning rates.

E.2 Regression model

To derive the variational model for the regression task, we apply the analysis of Section E.1 to the
KF update in Equations 27 and 28. Paralleling the derivation of Equation 37, the variance update in
Equation 28 (i.e., before applying the diagonal variational approximation) can be written as

S(t+ 1) = DS̃(t)D +N − (D(x(t) ◦ s2(t)))(D(x(t) ◦ s2(t)))>∑
ij x

2
ij(t)s

2
ij(t)

. (45)

Paralleling the derivation of Equations 41 and 42, the variational update comes out to be

s2ij(t+ 1) =

(
s2ij(t)e

−1/τi + 4ρ2 sinh 1
τi

)2
Ω(

s2ij(t) + 4ρ2e1/τi sinh 1
τi

)
Ω + x2j (t)s

4
ij(t)

(46)
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with

Ω =
∑
ij

4ρ2x2j (t)s
2
ij(t) sinh 1

τi

e−1/τis2ij(t) + 4ρ2 sinh 1
τi

. (47)

By substituting the diagonal matrix S̃(t) for S(t), the mean update in Equation 27 simplifies to

ωij(t+ 1) = e−1/τiωij(t)− αijxj(t) (ŷ(t)− y(t)) (48)

where xj(t) (ŷ(t)− y(t)) is the loss gradient for ωij , and the learning rates are given by

αij =
e−1/τis2ij(t)∑
i′j′ x

2
j′(t)s

2
i′j′(t)

. (49)

Thus, as above, the subweights learn independently according to their gradients, with different decay
rates and learning rates.

E.3 Classification model

To derive a closed-form variational approximation for the general EKF, such as for the classification
model in Section 3, it turns out that we need to apply the variational approximation to the posterior in
Equation 32, rather than to the iterative prior in Equation 34. Using Woodbury’s identity, the posterior
variance can be rewritten as

S(t)− S(t)J>
h̃

(
Jh̃S(t)J>

h̃
+Rŷ(t)

)−1
Jh̃S(t) = (J>

h̃
R−1ŷ(t)Jh̃ + S−1(t))−1. (50)

The form on the RHS is convenient because it is in terms of precision, allowing us to read off
the diagonal entries directly. That is, the variational approximation for the posterior variance is
diag(s′(t)2), with

s′2ij(t) =

([
J>
h̃
R−1ŷ(t)Jh̃

]
ij,ij

+ s−2ij (t)

)−1
. (51)

Here we have used the inductive assumption S(t) ≈ diag(s(t)2). Applying the transition from
posterior on step t to prior on step t + 1, we obtain the variance update for the variational model,
replacing Equation 34:

s2ij(t+ 1) = D2
ij,ijs

′2
ij(t) +Nij,ij . (52)

Woodbury’s identity also enables the mean update from Equation 33 to be rewritten, as

ω(t+ 1) = D
(
J>
h̃
R−1ŷ(t)Jh̃ + S−1(t)

)−1 (
S−1(t)ω(t) + J>

h̃
R−1ŷ(t)

(
T (y(t))− ŷ(t) + Jh̃ω(t)

))
.

(53)

Substituting the gradient of the EKF’s approximate likelihood (denoted L̃) from Equation 30,

∂ω(t)L̃ = J>
h̃
R−1ŷ(t)(ŷ(t)− T (y(t))), (54)

yields

ω(t+ 1) = D

(
ω(t)−

(
J>
h̃
R−1ŷ(t)Jh̃ + S−1(t)

)−1
∂ω(t)L̃

)
. (55)

The preconditioner on the gradient here is the posterior variance (see Equation 50), which we have
approximated as diag(s′2(t)). Although not necessarily entailed by the variational approximation,
we can consider applying the same approximation in updating the mean. This yields

ωij(t+ 1) = e−1/τiωij(t)− e−1/τis′2ij(t)∂wj(t)L̃. (56)

Thus, once again, the subweights learn independently according to their gradients, with different
decay rates and learning rates.
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F Implementation details

Latent parameters defining the task environments were sampled using the generative model in
Appendix A (i.e., matching the Bayesian model’s assumptions), using 20 timescales geometrically
spaced from τ1 = 1 to τ20 = 1000 (as in Figure 3A). The regression task was run for 10,000 trials,
and the classification task for 1000 trials. Each component OU process was run for 10τi burn-in steps.
The 1/f power spectrum was confirmed with a log-log plot (see Figure 3B).

In the regression task, the first feature was a constant bias term, x1 ≡ 1. The other 9 features were
sampled as N (0, I) on each time step.

For the classification task, class logits were sampled from 1/f processes and then multiplied by
0.886 before entering into softmax to determine class probabilities. Feature-class means were fixed
at 1 for the first feature (i.e., bias term) and were sampled from mutually independent 1/f processes
for features 2-10, multiplied by 0.224. These scaling factors were chosen so that perfect knowledge
of either the prior probabilities or the feature-class means on every trial would yield ideal-observer
performance of L̄ ≈ 1. Perfect knowledge of both would yield L̄ ≈ 0.35. These were merely
guidelines for equating prior and likelihood information, as perfect knowledge of either source of
information is not possible even with an optimal model of the dynamics.

All Bayesian and variational models assumed 10 timescales, geometrically spaced from τ1 = 2 to
τ10 = 800. This deliberate deviation from the generating process enabled testing of robustness,
specifically the hypothesis that it is the aggregate 1/f character of the environment and of the model
that matters, not the choice of component timescales used to approximate that character.
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