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Abstract— In this paper, we propose an end-to-end self-
driving network featuring a sparse attention module that learns
to automatically attend to important regions of the input.
The attention module specifically targets motion planning,
whereas prior literature only applied attention in perception
tasks. Learning an attention mask directly targeted for motion
planning significantly improves the planner safety by perform-
ing more focused computation. Visualizing the attention also
improves interpretability of end-to-end self-driving.

I. INTRODUCTION
Self-driving is one of today’s most impactful technological

challenges, one that promises to bring safety and convenience
to transportation. Tremendous improvements have been made
in self-driving perception systems, thanks to the success
of deep learning. This has enabled accurate detection and
localization of obstacles, providing a holistic understanding
of the surrounding world, which is then sent to the motion
planner to decide subsequent driving actions.

Despite the eminent success of these perception systems,
their detection objective is mis-aligned with the self-driving
vehicle’s overall goal, which is to drive safely to the desti-
nation. We typically train the perception systems to detect
all objects in the sensor’s range, and assign each object
an equal weight even if some objects are not important
and will never interact with the self-driving vehicle; for
example, they could be far away or parked on the other side
of the road as in Figure 1. As a result, a vast amount of
computation and model capacity is wasted in recognizing
very difficult instances that matter only for common metrics
such as average precision (AP), but not so much for driving.
This is in striking contrast with how humans drive: we
focus our visual attention in areas that directly impact safe
planning. Inspired by the use of visual attention in our brain,
which helps us to efficiently and selectively process complex
scenes, we aim to bring attention to self-driving systems.

Numerous studies in the past have explored adding sparse
attention in deep neural networks to improve computation
efficiency in classification [1], [2] and object detection [3],
[4], [5]. In order to perform well on the metrics employed in
common benchmarks, the attention mask in [3] still needs
to cover all actors in the scene, slowing the network when
the scene has many vehicles.

In this paper, our aim is to address these inconsistencies
such that each computation matters for the end goal of
driving. Specifically our contributions are as follows:
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Fig. 1. Left: a toy example. Right: our learned spatial attention
in red with ego vehicle in blue and others in green. Not all actors
impact our safe driving and so we should prioritize accordingly.

• We learn an attention mask directly towards the motion
planning objective for safe self-driving.

• We use the attention mask to reweight object detection
and motion forecasting losses in our joint end-to-end
training, focusing the model capacity on objects that
matter most. Different from manually prioritizing in-
stances [6], here the weighting is entirely data-driven.

• Our attention-based model achieves significantly re-
duced collision rate and improved planning perfor-
mance, while at a much lower computation cost.

• Attention mask visualization improves interpretability
of end-to-end deep learning models in self-driving.

II. RELATED WORK

Attention mechanism in deep learning: Human and
other primate visual perception systems feature visual at-
tention to reduce the complexity of the scene and speed-
up inference [7], [8]. Earlier studies in visual saliency aim
to predict human gaze with no particular task in mind [9].
Attention mechanisms nowadays are built in as part of
end-to-end models to optimize towards specific tasks. The
attention modules are typically implemented as multiplicative
gates to select features. This schema has shown to improve
performance and interpretability on downstream tasks such
as object recognition [10], [11], [1], instance segmenta-
tion [5], image captioning [12], question answering [13],
[14], as well as other natural language processing applica-
tions [15], [16], [17]. The visualization of the end-to-end
learned attention suggests that deep attention-based models
have an intelligent understanding of the inputs by focusing
on the most informative parts of the input.

Sparse activation in neural networks: Sparse coding
models [18] use an overcomplete dictionary to achieve sparse
activation in the feature space. In modern CNNs, sparsity is
typically brought by the widespread use of ReLU activation
functions, but these are rather unstructured, and speed-up has
only been shown on specially designed hardware [19], [20].
Structured spatial sparsity, on the other hand, can be made
efficient by using a sparse convolution operator [3], [21],
which in turn allows the network to shift its focus on more
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Fig. 2. The full neural motion planner (NMP) [35] with backbone
network and header networks.

difficult parts of the inputs [2], [22], [3]. In self-driving, [6]
proposes a ranking function to prioritize computations that
would have the most impact on motion planning. Weight
pruning [23], [24] is another popular way to achieve sparsity
in the parameter space, which is an orthogonal direction to
our proposed method.

Attention and loss weighting in multi-task learning:
Our end-to-end self-driving network is an instance of multi-
task learning as all three tasks—perception, prediction and
motion planning—are simultaneously solved by individual
output branches with shared features. It is common to use
a summation of all the loss functions, but sometimes there
are conflicting objectives among the tasks. Prior literature in
multi-task learning has studied dynamic weighting towards
different loss components, by using training signals such as
uncertainty [25], gradient norm [26], difficulty level [27],
or entirely data-driven objectives [28], [29]. In [28], [29],
task and example weights are learned by optimizing the
performance of the main task. The attention mechanism has
also been used in multi-task learning: in [30], a network
applies task-specific attention masks on shared features to
encourage the outputs to be more selective. Similar to
dynamic loss weighting models [28], we exploit the learned
attention towards weighting instance detection losses. Instead
of using multiple attentions, as was done in [30], we use one
single attention mask to optimize our main task: driving.

Safety-driven learnable motion planning: One of the
primary motivations of introducing attention into an end-to-
end motion planning network is to improve safety. Tradition-
ally, safety for self-driving models is done in terms of formal
model checking and validation [31], [32], [33], [34]. More
recently, with the widely available driving data, imitation
learning has been introduced in self-driving [35], [36], [37]
to learn from cautious human driving. Safety has also been
considered in terms of explicitly learning a risk sensitive
measure from human demonstration [38], [39]. In our work,
although safety is not explicitly encoded in our loss function,
we have experimentally verified that the sparse attention
models are significantly better at avoiding collisions.

III. PERCEIVE, ATTEND AND DRIVE

In this section, we present our framework for using
learned, motion-planning aware attention. We first describe
the end-to-end neural motion planner that serves as the
starting point of our work, and then introduce our proposed
attention module and attention-driven loss function, which
enable our novel neural motion planner to focus its compu-
tation in areas that matter for the end task of driving.
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Fig. 3. Our sparse attention neural motion planner (SA-NMP),
which takes in LiDAR and HDMaps data, and outputs perception,
prediction, and planning. Attention is generated from a U-Net and
applied on the input branches of residual blocks. Our attention is
learned towards the planning task, which is a direct model output.

A. A review on Neural Motion Planner (NMP)

Our proposed model extends upon the neural motion plan-
ner (NMP), which jointly solves the perception, prediction
and planning problems for self-driving. In this section we
briefly review NMP depicted in Figure 2, and refer the reader
to [35] for more details.

Input and backbone: NMP voxelizes LiDAR point
clouds to a birds-eye-view (BEV) feature map and fuses them
with M channels of rasterized HDMap features to produce
an input representation of size (ZT ′+M)×H ×W , where
Z,H,W are the height and spatial dimensions and T ′ = 10 is
the number of input LiDAR sweeps. The backbone consists
of 5 blocks, with the first 4 producing multi-scale features
that are concatenated and fed to the final block. Overall the
backbone downsamples the spatial dimension by 4.

Multi-task headers: Given the features computed by the
backbone, X ∈ R128×H

4 ×
W
4 , NMP uses two separate headers

for perception & prediction, and motion planning. The per-
ception & prediction header consists of separate branches
for classification and regression. The classification branch
outputs a score for each anchor box at each spatial location
over the feature map X , while the regression branch outputs
regression targets for each anchor box, including targets for
localization offset, size, and heading angle. The planning
header consists of convolution and deconvolution layers to
produce a cost volume C ∈ RT×H

4 ×
W
4 representing the cost

for the self-driving vehicle to be at every possible location
and time, with T the fixed future planning horizon.

Planning inference: At inference time, NMP samples N
trajectories that are physically realizable, and chooses the
lowest cost trajectory for the ego-car:

τ
?(X) = argmin

τ1...N

c(τi,X). (1)

where the cost of a trajectory τ = (xt ,yt)
T
t=1 is the sum of

all its waypoints in the cost volume:

c(τ,X) =
T

∑
t=1

Ct,xt ,yt (X), (2)

We sample trajectories using a mixture of Clothoid, circle,
and straight curves [40]. We refer the readers to [35] for more
details on the sampling procedure.

B. Sparse Attention Neural Motion Planner (SA-NMP)

In this section, we propose our sparse spatial attention
module for self-driving, shown in Figure 3, which learns to



save computation while performing well on the end task of
driving safely to the goal.

Input and backbone: We exploit the same input represen-
tation as NMP and use the same perception, prediction, and
planning headers. We replace NMP backbone with the state-
of-the-art backbone network of PnPNet [41], which uses
cross-scale blocks throughout to fuse BEV sensory input.
Each cross-scale block consists of 3 parallel branches at dif-
ferent resolutions that downsample the feature map, perform
bulk computations, and then upsample back to the backbone
resolution, before finally fusing cross-scale features across
all branches. There is an additional residual connection
across each cross-scale block. The final output feature from
the backbone consists of 128 channels at 4x downsampled
resolution, which is forwarded to the planning and detection
headers. In addition to the improved performance, PnPNet
can be easily scaled for different computational budgets by
varying the depth and width of the cross-scale blocks.

Existing attention-driven approaches [3] tackle only the
perception task and use either a road mask obtained from
HDMaps or a vehicle mask produced by a different percep-
tion module. As a consequence, they waste computation on
areas that will not affect the self-driving car. Inspired by
human driving, we instead propose a novel approach that is
end-to-end trainable and performs computation selectively
for planning a safe maneuver. As shown in Fig. 3, the
learned attention mask then gates the backbone network,
limiting computation to areas where attention is active. By
using binary attention, we can leverage sparse convolution
to improve the computational efficiency.

Attention generator: We utilize a network to predict a
scalar score for each spatial location. For efficiency and
simplicity, we use a small U-Net [42] with skip connections
and two downsample/upsample stages. The baselines in
Sec. IV-A replace this with static attention maps.

Learning binary attention mask: Computational effi-
ciency has been shown to be one of the most prominent
advantages of using the attention mechanism. For soft atten-
tion masks the computation is still dense across the entire
activation map, and therefore no computation savings can
be achieved. In SBNet [3], the authors showed that their
sparse convolution operator can achieve significant speed-
ups with a given discrete binary attention mask. Here, we
would also like to exploit the computational benefit of
sparse convolution by using discrete attention outputs. To
achieve this, we make use of the Gumbel softmax technique
[43], [44] since the step function is not differentiable, and
using the standard sigmoid function suffers from a more
severe bias-variance trade-off [43]. Let i, j denote spatial
coordinates, and zi, j the scalar output from the attention U-
Net. We first add the Gumbel noise on the logits as follows:

πi, j = sigmoid(zi, j) (3)

α
(0)
i, j = logπi, j +g(0)i, j (4)

α
(1)
i, j = log(1−πi, j)+g(1)i, j , (5)

where gi, j = − log(− logu), and u is sampled from
Uniform[0,1]. At inference time, hard attention Ai, j can be
obtained by comparing the logits,

Ai, j =

{
1 if α

(0)
i, j ≥ α

(1)
i, j

0 otherwise.
(6)

During training, however, we would like to approximate the
gradient by using the straight-through estimator [43], [45].
Hence, in the backward pass, the step function is replaced
with a softmax function with a temperature constant K
(where Ã is the underlying soft attention):

Ãi, j =
exp
(

α
(0)
i, j /K

)
exp
(

α
(0)
i, j /K

)
+ exp

(
α
(1)
i, j /K

) . (7)

Applying attention: Given a generated hard attention
map, we would like to apply it back to the BEV features in
the model backbone so as to sparsify the spatial information,
allowing computation to be focused on the important regions
only. We choose to do so in a residual manner [1], [3] to
avoid deteriorating the features throughout the backbone.
Let x+F(x) denote the normal residual block. Our attention
mask is multiplied with the input to the residual block:

ResAttend(x) = x+F(x�A), (8)

where � denotes elementwise multiplication. See Fig. 3 for
an illustration of our architecture.

C. Learning

We train our sparse neural motion planner (including the
attention) end-to-end with a joint multi-task learning ob-
jective that combines perception, motion forecasting (Lclass,
Lreg) and planning (Lplan):

L = λclassLclass +λregLreg +λplanLplan +λALA +λ‖w‖2
2, (9)

where LA is an L1 loss, defined in Equation 17, that controls
the sparsity of the attention mask, and ‖w‖2

2 is the stan-
dard weight decay term. From [35], [41], we fix λclass =
1.0,λreg = 0.5,λplan = 0.001. More optimization details are
provided in Section IV-A

Perception & prediction (PnP) loss: This loss follows the
standard classification and regression objectives for object
detection. The classification part uses binary cross-entropy:

Lclass,i, j = ∑
k
−ŷi, j,k log(yi, j,k)− (1− ŷi, j,k) log(1− yi, j,k),

(10)

where ŷ is the predicted classification score between 0 and 1,
and y is the binary groundtruth. For each detected instance,
the model outputs a bounding box, and a pair of coordinates
and angles for each future step. We reparameterize the shift
of a bounding box (x,y,w,h,θ) from an anchor bounding
box (xa,ya,wa,ha,θa) in a 6-dimensional vector δ :

δt =

(
xa− x

w
,

ya− y
h

, log
wa

w
, log

ha

h
,sin(θa−θ),cos(θa−θ)

)
.

(11)



A regression loss is then applied for the trajectory of the
instance up to time T . For each spatial coordinate (i, j), we
sum up the losses of all bounding boxes b where the ground
truth belongs to this location:

Lreg,i, j = ∑
b∈(i, j)

T

∑
t=0

SmoothL1(δ̂b,t ,δb,t), (12)

where δ̂ is the model predicted shifts and δ is the
groundtruth shifts.

Auxiliary loss masking: Our overall objective is to
achieve good performance in motion planning, so PnP is an
auxiliary task. Since the majority of our computation happens
within the attended area, intuitively the model should not
be penalized as severely for mis-detecting objects not in
the attended area. We therefore propose to use our spatial
attention mask A to re-weight the PnP losses as follows:

Lclass = γ1 ∑
i, j

Ai, jLclass,i, j + γ0 ∑
i, j

Lclass,i, j (13)

Lreg = γ1 ∑
i, j

Ai, jLreg,i, j + γ0 ∑
i, j

Lreg,i, j (14)

where γ1 weights attended instances, and γ0 weights all
instances. We fix γ0 = 0.1 and γ1 = 0.9.

Motion planning loss: The motion planning loss utilitizes
the max-margin objective, where the ground-truth driving
trajectory (performed by a human) should be of lower cost
than other trajectories sampled by the model. Let (xt ,yt)
be the groundtruth trajectory and let ct be the cost volume
output by the model. We sample N lowest cost trajectories
based on the cost volume: {x(i)t ,y(i)t }N

i=1, and penalize the
maximum margin violation between the groundtruth and
model samples:

Lplan = max
i=1...N

T

∑
t=1

max{0,ct − c(i)t +∆
(i)
t }, (15)

where ∆
(i)
t is the task loss capturing spatial differences, and

traffic violations vt encoded in binary:

∆
(i)
t =

∥∥∥(xt ,yt)− (x(i)t ,y(i)t )
∥∥∥

2
+ v(i)t . (16)

Attention sparsity loss: To encourage focused attention
and high sparsity, we use an L1 regularizer on the attention
mask as follows. We control sparsity with λA in Equation 9.

LA = ∑
i, j

Ai, j. (17)

IV. EXPERIMENTAL EVALUATION

We evaluate on a real-world driving dataset (Drive4D),
training on over 1 million frames from 5,000 scenarios and
validating on 5,000 frames from 500 scenarios, using both
LiDAR and HD-maps. We also evaluate on nuScenes [46], a
large-scale public dataset, with a train-set of over 200,000
frames and a test-set of 5,000 frames. Due to inaccurate
localization provided with the benchmark, we omit HDMaps
and only use LiDAR.

A. Implementation Details and Metrics

Training: To jointly train SA-NMP with attention, we
use pretrained weights for the backbone and headers from
training a SA-NMP without attention (dense) for two epochs.
We train all our models with batch size 5 across 16 GPUs in
parallel using Adam [47] optimizer. We use an initial learning
rate of 0.0001 and a decay of 0.1 at 1.0 and 1.6 epoch(s),
for a total of another 2.0 epochs.

Evaluation: To evaluate driving and safety performance,
we focus on the following planning metrics which are accu-
mulated over all 6 future timesteps (3s): Planning L2 is the
L2 distance between waypoints of the predicted future ego
trajectory and those of the ground-truth trajectory (charac-
terized by human driving). Collision rate is the frequency of
collisions between the planned ego trajectory and the ground
truth trajectories of other actors in the scene. Lane violation
rate measures the number of lane boundary violations by
the planned ego trajectory. Due to lack of accurate HDMaps
[48], we don’t evaluate this on nuScenes v1.0.

Baselines: We compare our learned attention to baselines
that are end-to-end trained using static attention masks
obtained from priors. Road Mask covers the entire road as
provided from the map data. Vehicle Mask strictly covers all
detections in the input space, obtained from a PSPNet [49]
trained for segmentation. Proximity Mask is a circular radius
around the ego vehicle. Dense is not using sparse attention.

B. Results

Quantitative results: With a sparse attention mask
learned towards motion planning, we can leverage the spar-
sity in the network backbone to greatly reduce compu-
tational costs, while not only maintaining but improving
model performance. In our experimental results, we use
theoretical FLOPs to show the efficiency of our network,
but this also translates to real time gains as SBNet [3]
has been shown to leverage sparsity to achieve real speed-
ups. The increase in efficiency from leveraging sparsity is
shown in Table I, where our learned attention model uses
∼ 80% fewer FLOPs than Dense SA-NMP thanks to its
95% sparse attention mask. Also, even with an identical SA-
NMP backbone as the baselines (except NMP), our model
with learned attention performs better in all motion planning
metrics, which indicates that focused backbone computation
is greatly advantageous to the overall goal of safe planning.
NMP+Road performs slightly better in Lane Violation due to
the road mask attention focusing on all road/lane markings.
However, this baseline uses more than double the FLOPs
since its attention mask looks at the entire road surface
at only 68.9% sparsity. From Fig. 4, our learned attention
model clearly outperforms other baselines in collision rate
and planning L2, across all computational budgets.

Qualitative results: In Figure 5, we show examples of
our learned attention compared to baselines. As expected,
our model focuses on the road and vehicles directly ahead;
however, it also diverts some amount of attention to distant
vehicles and road markings. This ability to dynamically
distribute attention is likely why our model outperforms the
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Fig. 4. Planning performance of our learned sparse attention model compared to other baselines at varying computation budgets (lower
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NMP backbone, which can be scaled by changing the depth and width, and allows us to vary the computation of Dense SA-NMP and
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TABLE I
PERFORMANCE AND EFFICIENCY OF OUR LEARNED ATTENTION MODEL VS. DENSE AND SIMPLE ATTENTION BASELINES.

Drive4D Backbone Sparsity Planning L2 Collision Rate Lane Violation
Dataset FLOPS at 3s (m) over 3s (%) over 3s (%)
NMP [35] 39.18B 0.0% 2.279 0.657 2.780
Dense SA-NMP 22.73B 0.0% 2.207 0.639 1.350
SA-NMP+Vehicle Mask 5.43B 93.6% 2.297 0.639 1.387
SA-NMP+Proximity Mask 5.31B 94.0% 2.276 0.584 1.387
SA-NMP+Road Mask 12.85B 68.9% 2.194 0.548 1.296
SA-NMP+Learned Attn (Ours) 5.22B 95.0% 2.102 0.511 1.338

nuScenes Backbone Sparsity Planning L2 Collision Rate
Dataset FLOPS at 3s (m) over 3s (%)
NMP [35] 39.18B 0.0% 2.310 1.918
Dense SA-NMP 22.73B 0.0% 2.271 2.198
SA-NMP+Vehicle Mask 5.44B 94.0% 2.263 2.234
SA-NMP+Proximity Mask 5.31B 94.0% 2.103 2.073
SA-NMP+Learned Attn (Ours) 5.34B 94.0% 2.052 1.588

simple baselines, which attend either indiscriminately (Dense
and Road) or too selectively (Vehicle and Proximity). Note
that our attention learns which actors to focus on and to what
capacity, unlike the vehicle mask which attends fully to every
actor while ignoring road features. From the visualizations,
we can better understand our model’s improved collision
avoidance. Since the attention is dynamic, it appears that
our model is more effective at anticipating other vehicles
resulting in more cautious planning. This is illustrated by
Columns A, B in Figure 5, where the planned trajectory of
our model avoids future collisions with others. The failure
cases mostly arise from rear-end collisions, one of which is
Column D where all models are hit by the trailing vehicle.
Our model focuses on surrounding vehicles and not enough
on the open road to its right, which would give the option
of making a right turn.

Sparsity of learned attention: Table II shows the result of
varying λA from Eq. 9, which weights the L1 regularization
term from Eq. 17, with other settings held constant. We found
that overall motion planning performance improves with
increased sparsity, or essentially more focused computation,
and peaks at 95% sparsity.

Perception and prediction (PnP) loss reweighting:
Table III shows results with varying γ1 and γ0 = 1− γ1

TABLE II
VARYING LEARNED ATTENTION SPARSITY WITH λA .

Sparsity λA Planning L2 Collision Rate Lane Violation
at 3s (m) over 3s (%) over 3s (%)

Dense 0% - 2.207 0.639 1.350
Ours 20% 1.0e−8 2.179 0.547 1.352
Ours 50% 1.0e−7 2.138 0.620 1.361
Ours 75% 5.0e−7 2.132 0.584 1.387
Ours 95% 1.0e−6 2.102 0.511 1.338
Ours 99% 5.0e−6 2.211 0.566 1.367

TABLE III
INFLUENCE OF LOSS REWEIGHTING RATIO γ1 .

Model Planning L2 Collision Rate Lane Violation
at 3s (m) over 3s (%) over 3s (%)

γ1 = 1.00 2.210 0.548 1.378
γ1 = 0.90 2.102 0.511 1.338
γ1 = 0.75 2.230 0.621 1.393
γ1 = 0.50 2.194 0.637 1.405
γ1 = 0.00 2.188 0.633 1.397

from Eq. 14 which control the weighting of the PnP loss
computed on actors inside vs. outside the attention mask.
All other variables are fixed, including sparsity at 95%.
As γ1 increases, the learned attention is less restricted by
detection performance on all actors, and is able to focus
on only the most important actors and parts of the road,
distributing attention towards improving motion planning
performance. Note that γ1 = 1.0 is an extreme case where
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PnP loss is computed only on actors within attention mask:
the model learns to cheat by generating attention that avoids
all actors resulting in no PnP learning signal, hence the poor
performance. For our main experiments, we fix γ1 = 0.9.

Detection performance: Since the overall goal is im-
proved motion-planning at reduced computational efficiency,
focusing on accurately detecting all actors indiscriminately
would be contradictory to the purpose of our learned sparse
attention. We should not care as much about far away or
irrelevant actors that have little effect on safe planning, and
should instead focus our computation on important input
regions. Table IV compares detection performance between
our learned attention and the baseline dense model evaluated
on different subsets of actors in the scene. Full includes
all actors in the input, while Attended Region is the subset
of actors that lie within the attention mask. For evaluating
the dense model, we use the attention mask generated by
our learned model to get the Attended Region, ensuring
that both models are evaluated on the same actor subsets
in both settings. The results shows that our 95% sparse,
learned attention model is better than the dense model at
detecting actors within the attention mask, meaning that its
performance is better focused on actors that it believes are

TABLE IV
DETECTION PERFORMANCE ON DIFFERENT INPUT REGIONS.

Model mAP on Full mAP on Attended Region
IoU@0.3 IoU@0.5 IoU@0.7 IoU@0.3 IoU@0.5 IoU@0.7

Dense SA-NMP 97.8 94.7 80.3 94.1 93.3 87.9
Ours 95% Sparse 96.3 92.1 74.9 94.2 93.8 88.5

important. This may explain the overall improved planning
performance of our attention-driven models as demonstrated
in the main quantitative and qualitative results.

V. CONCLUSION

In this work we propose a biologically inspired, end-
to-end learned, sparse visual attention mechanism for self-
driving, where the sparse attention mask gates the feature
backbone computation. As opposed to existing methods that
focus on using attention for perception only, our attention
masks are directly optimized for motion planning, which
enables our network to output better planned trajectories
while achieving more efficiency with higher sparsity. As
future work, the attention module can be extended to have
recurrent feedbacks from the output layers to better leverage
temporal information.
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