
Cost-Efficient Online Hyperparameter Optimization

Jingkang Wang∗1,2 wangjk@cs.toronto.edu

Mengye Ren∗1,2 mren@cs.toronto.edu

Ilija Bogunovic3 ilijab@ethz.ch

Yuwen Xiong1,2 yuwen@cs.toronto.edu

Raquel Urtasun1,2 urtasun@cs.toronto.edu

University of Toronto1, Uber ATG2, ETH Zürich3

Abstract

Recent work on hyperparameters optimization (HPO) has shown the possibility of training
certain hyperparameters together with regular parameters. However, these online HPO
algorithms still require running evaluation on a set of validation examples at each training
step, steeply increasing the training cost. To decide when to query the validation loss, we
model online HPO as a time-varying Bayesian optimization problem, on top of which we
propose a novel costly feedback setting to capture the concept of the query cost. Under
this setting, standard algorithms are cost-inefficient as they evaluate on the validation
set at every round. In contrast, the cost-efficient GP-UCB algorithm proposed in this
paper queries the unknown function only when the model is less confident about current
decisions. We evaluate our proposed algorithm by tuning hyperparameters online for VGG
and ResNet on CIFAR-10 and ImageNet100. Our proposed online HPO algorithm reaches
human expert-level performance within a single run of the experiment, while incurring only
modest computational overhead compared to regular training.

Keywords: Bayesian Optimization, Hyperparameter Tuning, Gaussian Process

1. Introduction

Training deep neural networks involves a large number of hyperparameters, many of them
found through repetitive trial-and-error. Often the results are very sensitive to the selec-
tion of hyperparameters and researchers typically follow classic “cookbooks” with many of
their hyperparameters copied from the predecessor models. Hyperparameter optimization
(HPO) (Hutter et al., 2011; Snoek et al., 2015; Jamieson and Talwalkar, 2016) could po-
tentially save much time from grid search procedures performed in nested loops; however,
repetitive experiments on the order of hundreds are still required, which makes applying
HPO prohibitively expensive in practice.

Recent advances in meta-optimization (Lorraine and Duvenaud, 2018; MacKay et al.,
2019) have shown that one can actually tune certain hyperparameters, e.g., data augmenta-
tion, dropout, example weighting, entirely online throughout the training of the main model
parameters, by constantly inspecting at the validation loss. While this means that the train-
ing job only needs to be launched once, the cost of each training step rises sharply: to learn
the hyperparameters, one has to take a gradient step from the reward signals obtained by
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evaluating on a separate set of validation examples to the hyperparameters. Depending on
the size of the validation set, this can make the training time several times longer.

Ultimately, the goal is to design an online HPO algorithm that is efficient in terms
of computation cost that arises from validation loss evaluations, i.e., whenever the algo-
rithm queries for “ground-truth” of validation loss. Towards building such an algorithm,
we model the environment as a time-varying Bayesian Optimization (BO) problem with un-
known time-varying reward/objective. In contrast with the standard BO setting, we require
the agent to pay a certain cost to observe the reward every time it decides to query the un-
known function. In this paper, we propose a time-varying cost-efficient GP-UCB (Srinivas
et al., 2010; Bogunovic et al., 2016) algorithm, and provide kernel-based regret guarantees.
Our algorithm makes use of a Gaussian process (GP) model to quantify uncertainty in
the estimates and cost-efficient query rule. Based on this rule, the algorithm queries the
unknown objective only in rounds when it is ”less” confident in its decision.

We verify the effectiveness of our proposed algorithm empirically by tuning hyperparam-
eters of large scale deep networks. First, we automatically adjust the tuning schedules of
self-tuning networks (MacKay et al., 2019) on CIFAR-10 (Krizhevsky et al., 2009). Second,
we optimize data augmentation parameters of a state-of-the-art unsupervised contrastive
representation learning algorithm (Chen et al., 2020) on ImageNet100 (Deng et al., 2009).
We show that with modest computation overhead compared to regular training, one can
achieve the same or better performance compared to baselines that have been extensively
tuned by human experts.

To summarize, the contributions in this paper are as follows: (1) We introduce a novel
costly feedback setting for BO to model the evaluation cost for online HPO; (2) We propose a
cost-efficient GP-UCB algorithm with kernel-based theoretical guarantees for time-varying
BO with costly feedback; (3) We demonstrate the effectiveness of our method in tuning
hyperparameters for modern deep networks in two challenging tasks.

2. Related Work

Bayesian optimization (BO): BO is a popular framework for optimizing an unknown
objective function from point queries that are assumed to be costly (Shahriari et al., 2015).
Besides the standard problem formulation (Srinivas et al., 2010), different works have con-
sidered various settings including contextual setting (Krause and Ong, 2011), batch and
parallel setting (Desautels et al., 2014), optimization under budget constraints (Lam et al.,
2016) and robust optimization (Bogunovic et al., 2018). Of particular interest to our work
are time-varying BO methods (Bogunovic et al., 2016; Imamura et al., 2020) that consider
objectives that vary with time. In Bogunovic et al. (2016), the authors consider time vari-
ations that follow a simple Markov model. Their proposed algorithm TV-GP-UCB comes
with the model-based forgetting mechanism and attains regret bounds that jointly depend
on the time horizon and rate of function variation. In this work, we consider the same
time-varying model but in the setting of sparse observations. That is, while previous works
have focused on the setting where observations are received at every time step, our goal is
to optimize an unknown time-varying objective subject to a specified budget constraint.

Hyperparameter Optimization (HPO): There are three mainstream frameworks in
HPO: model-free, model-based and gradient-based approaches. Specifically, grid search,
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random search (Bergstra and Bengio, 2012) and its extensions (e.g., successive halving (Jamieson
and Talwalkar, 2016) and Hyperband (Li et al., 2017)) are standard model-free HPO meth-
ods that ignore the structure of the problem and model. In contrast, BO (Hutter et al.,
2011; Bergstra et al., 2011; Snoek et al., 2012, 2015) is a common model-based approach that
aims to model the conditional probability of performance given the hyperparameters and
a dataset. Other assumptions such as learning curve behavior (Swersky et al., 2014; Klein
et al., 2017b; Nguyen et al., 2019) and computational cost (Klein et al., 2017a) are taken
into account in BO to avoid learning from scratch every time. However, both model-free and
model-based approaches involve repetitive trial-and-error processes that are very expensive
in practice. An alternative gradient-based solution is to cast HPO as a bilevel optimization
problem and take gradients with respect to the hyperparameters. Since unrolling the whole
learning trajectories is prohibitively expensive, researchers usually consider a biased several-
step look-ahead approximation (Domke, 2012; Luketina et al., 2016; Franceschi et al., 2018)
or the implicit function theorem (Larsen et al., 1996; Pedregosa, 2016; Lorraine et al., 2019;
Bertrand et al., 2020) to obtain the gradients. To further improve the efficiency of HPO, re-
cent works (Lorraine and Duvenaud, 2018; MacKay et al., 2019) utilize hypernetworks (Ha
et al., 2017) to approximate the inner optimization loop and a held-out validation set to
collect reward signals. Instead of constantly evaluating the validation loss, which brings
remarkable computation overhead, this work propose a cost-efficient evaluation rule, and
emprirically demonstrates it effectiveness in the real HPO tasks.

3. Bayesian Optimization with Costly Feedback

Recent online HPO algorithms require to obtain reward signals constantly by evaluating the
metrics such as performance gain on the validation set, drastically increasing the training
cost. Motivated by this observation, we model HPO as a time-varying Bayesian optimization
(BO) problem where the unknown function is treated as the reward signals obtained through
subsequent evaluations. To capture the evaluation cost induced by observing the rewards,
we introduce a novel costly feedback setting that allows the agent to decide, at every round,
whether to receive the observation. In turn, the agent is required to pay a certain cost
whenever it receives feedback.

3.1 Problem Setup

We aim to sequentially optimize an unknown objective function ft(x) : D×T → R defined
on composite space X = D × T , where D is the finite input domainand T = {1, 2, . . . , T}
represents the time domain. At each round 1 ≤ t ≤ T, t ∈ N, the agent decides upon a
data point xt. After selecting the point xt, it has the option to decide whether to receive
the feedback by interacting with ft. If the agent chooses to observe the feedback, then
it receives a noisy observation yt = ft(x) + zt, where zt is assumed to be independently
sampled from a Gaussian distribution N (0, σ2). Let Snt = {(xh(i), yh(i), i)}ni=1 denote the
data obtained through n observations till round t. Here h(i) denotes the mapping function
that records the round at which the agent observes the i-th data point. The agent then
chooses its next point xt+1 based on the previously collected data Snt . If the agent decides
to query the unknown function at round t, then it needs to pay a cost ct. We let ct = 1 if

3



the feedback yt is received at round t, and otherwise ct = 0. We define the cumulative cost
as CT =

∑T
t=1 ct that records the total number of queries within T rounds.

Connection to online HPO: In this paper, online HPO is modeled as the time-varying
BO with costly feedback – hyperparameter configurations xt are selected sequentially to
maximize the reward signals ft(x). Since evaluation on the validation set is expensive, the
agent is allowed to skip the evaluation or pay a certain cost ct to see the reward.

To measure the performance of algorithms, the regret for t-th round is defined as rt =
maxx∈D ft(x)− ft(xt). The cumulative regret RT is the sum of instantaneous regrets RT =∑T

t=1 rt. Furthermore, we define the cumulative loss as LT = RT +CT to balance between
regret and cost. We note that if an agent queries the unknown objective function at each
time step, we recover the standard time-varying BO setting Bogunovic et al. (2016).

4. Cost-Efficient GP-UCB Algorithm

Since the reward signals for online HPO vary as the learning proceeds, and similar hy-
perparameter configurations lead to similar performance, we consider using a time-varying
Gaussian process (GP) to model the objective function ft. Consequently, we start this
section by studying the behavior of time-varying GP models with sparse observations. We
then propose a novel cost-efficient algorithm and study its theoretical performance. We
defer all the analysis to the supplementary material.

4.1 Time-varying Gaussian Process Model

We use a spatio-temporal GP to model the underlying function ft. The smoothness prop-
erties of ft are depicted by a composite kernel function (Bogunovic et al., 2016; Imamura
et al., 2020): k = kspace ⊗ ktime, where kspace : D × D → R+ and ktime : T × T → R+

are spatial and temporal kernels; (kspace ⊗ ktime)((x, t), (x
′, t′)) := kspace(x, x

′) · ktime(t, t
′).

Following Bogunovic et al. (2016), we consider the following transition relation of the un-
derlying function: ft+1(x) =

√
1− ϵft(x) +

√
ϵgt+1(x), where gt is sampled from a GP

with a mean function µ and a kernel function k, i.e., gt ∼ GP(µ, k)1; ϵ ∈ [0, 1] is the for-
getting rate that constrains the variation of the function. This particular Markov model
maps to the following exponential temporal kernel as shown in Bogunovic et al. (2016):

ktime (τ, τ
′) = (1− ϵ)

|τ−τ ′|
2 .

Given observed data points xn
t = {xh(1), . . . , xh(n)} and yn

t = {yh(1), . . . , yh(n)}, the

posterior over f is a GP with mean µ̃t(x), covariance kt(x, x
′) and variance σ̃2

t (x) = kt(x, x):

µ̃t(x) = k̃n
t (x)

T
(
K̃n

t + σ2Int

)−1

yn
t , (1)

kt(x, x
′) = k(x, x′)− k̃n

t (x)
T
(
K̃n

t + σ2Int

)−1

k̃n
t (x

′), (2)

where K̃n
t = Kn

t ◦Dn
t , with Dn

t =
[
(1− ϵ)|h(i)−h(j)|/2]n

i,j=1
, and k̃n

t (x) = kn
t (x) ◦ dn

t with

dn
t =

[
(1− ϵ)(t+1−h(i))/2

]t
i=1

. Here Kn
t = [k (xi, xj)]

n
i,j=1, k

n
t (x) = [k (xi, x)]

n
i=1, ◦ is the

Hadamard product, and Int is the n× n identity matrix.

1. Without loss of generality, as in Srinivas et al. (2010), we assume µ = 0 for GPs not conditioned on data.
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One key challenge in BO is to balance the exploration-exploitation tradeoffs rigorously.
Various works (e.g., Srinivas et al. (2010); Bogunovic et al. (2016)) have focused on the
upper-confidence bound (UCB) rule that selects points by maximizing a linear combination
of posterior mean and variance. In this paper, our focus is also on the UCB rule due
to its strong theoretical guarantees and empirical performance. In what follows, we let

ucbt(x) := µ̃t(x) + β
1/2
t+1σ̃t(x), where {βt}Tt=1, each βt ∈ R+, is a non-decreasing sequence of

exploration parameters, selected as Bogunovic et al. (2016), such that (w.h.p.) ucbt(x) is a
valid upper confidence bound on ft(x) for every x and t.

4.2 Strategies for Querying Feedback

In BO with costly feedback, there are two decisions for the agent to make at every round:
1) where to evaluate the unknown objective; 2) whether to receive the feedback (and con-
sequently incur cost). In this section, we focus on the latter problem. To minimize regret
while reducing the query cost, we propose two strategies for the query allocation.

Querying with Bernoulli Sampling Schedule: A simple and model-agnostic method
for our problem is to query the objective function according to a fixed probability. Specifi-
cally, we query the feedback based on a Bernoulli random variable Ber(B/T ), which guar-
antees that the algorithm receives in expectation B observations of yt.

Leveraging Uncertainty Information from GP: Although the Bernoulli strategy de-
fined above can reduce the query cost, it does not leverage any knowledge from the GP
model. As a consequence, in practice, there is often a significant performance loss com-
pared to standard algorithms with full observations. To overcome this difficulty, we propose
a cost-efficient query rule that automatically assesses the uncertainty of the current decision
for time-varying GP-UCB (Bogunovic et al., 2016) and its variants.

On a high level, the agent aims to maintain informative queries but skip uninformative
ones to save the query cost. Hence, we consider the following cost-efficient query rule: the
agent only queries the feedback when the following condition satisfies:

P (ŷt(xt) > ŷt(x)) < κ, ∃x ∈ D \ {xt},

where ŷt(x) is the posterior predictive estimation of the unknown objective at point x,
which is a random variable distributed according to N

(
µ̃t(x), σ̃

2
t (x)

)
. The analytic solution

to P (ŷt(xt) > ŷt(x)) < κ, as well as the analysis of the choices of κ are provided in Ap-
pendix A. This rule explicitly encourages receiving feedback when the agent is less confident
in distinguishing the best candidate. The intuition behind this rule is to skip querying ft
when the selected xt leads to “small” regret.

4.3 Cost-Efficient GP-UCB Algorithm

We integrate the two strategies for querying feedback in time-varying GP-UCB model and
obtain two algorithms for our costly feedback setting. Specifically, we give the cost-efficient
algorithm (CE-GP-UCB) that leverages the uncertainty information from GP in Algo-
rithm 1. Our algorithm selects the points with largest UCB at every round (Line 3) but
only observes the feedback yt when the when the model is most uncertain (Line 4). Note
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Algorithm 1 CE-GP-UCB

Require: Input Domain D, total rounds T , GP prior (µ̃0, σ̃0, k), forgetting rate ϵ, user-specific
confidence threshold κ

1: Initialize observation set S00 = ∅, number of interactions n = 0.
2: for t = 1, 2, · · · , T do
3: Choose xt = argmaxx∈D µ̃t−1(x) +

√
βtσ̃t−1(x) ▷ Select points according to UCB rule

4: if P (ŷt(xt) > ŷt(x)) < κ, ∃x ∈ D \ {xt} then ▷ Cost-efficient query strategy
5: Receive feedback yt = ft (xt) + zt, n← n+ 1 ▷ Interact with ft and receive feedback
6: Add (xt, yt, t) to observation set: Sn+1

t = Snt−1 ∪ (xt, yt, t)
7: Perform Bayesian update to obtain µ̃t and σ̃t

8: else µ̃t = µ̃t−1, σ̃t = σ̃t−1, Snt = Snt−1 ▷ Do not observe feedback
9: end if

10: end for

that the query strategy can be replaced by Bernoulli sampling strategy to consume the
budget B as introduced in Sec 4.2.

When no feedback is received (Line 8), there is no update of the GP model; however,
due to the time-varying nature, the model will be less confident about the estimation for
the candidates thus the posterior variance will increase.

Remark: Note that if the candidates are close to each other (e.g., quantized candidates
for continuous variables), the model will never be confident in its current decision since
the UCB of best and second-best candidates are very close. In other words, the cost-
efficient query rule (Line 4 in Algorithm 1) will continuously be activated. However it is
less informative to query the feedback for two close candidates within one mode. Therefore,
in practice, we first find the local optima of the UCB function and their corresponding data
points, then deploy the cost-efficient query rule for these local optima.

5. Experiments

We thoroughly evaluate the proposed algorithm on both synthetic data and practical on-
line hyperparameter optimization problems: (1) tuning schedules for self-tuning networks
(STN MacKay et al. (2019)); (2) data augmentations for unsupervised representation learn-
ing (Chen et al., 2020). Extensive experiments show that cost-efficient query rule leads to
substantial improvements over simple Bernoulli strategy. We leave extra experimental de-
tails in Appendix B.

5.1 Evaluation on Synthetic Data

We follow the same synthetic setting as previous study Bogunovic et al. (2016). Specifically,
we used a one-dimensional input domain D = [0, 1] and quantized it into 1,000 uniformly
divided points. We generated the time-varying objective functions according to the following
Markov model ft+1(x) =

√
1− ϵft(x) +

√
ϵgt+1(x) under different forgetting rate ϵ, where

gt(x) ∼ GP(0, k). We use Matérn3/2 kernel for GP models and set sampling noise variance
σ2 = 0.01. The time horizon T is set as 500.

Figure 1 shows the trade-off curves between average regret RT /T and query cost CT

for different algorithms, where the performance is averaged over 50 independent trials.
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Figure 1: Comparison of trade-off between average regret RT /T and query cost CT .

(a) TV-GP-UCB (b) TV-GP-UCB Ber(0.8) (c) ours (κ = 0.90) (d) ours (κ = 0.95)

Figure 2: Visualizations of GP models. The purple points and green points denote the
agents’ choices to receive the feedback or not. Data points with darker color mean that
they are visited more recently. The blue line (—) and dashed red line (---) indicate
the ground truth of unknown objective function and the posterior mean. The gray area
denotes the confidence area.

Specifically, we consider the TV-GP-UCB (Bogunovic et al., 2016), R-GP-UCB (Bogunovic
et al., 2016), and its variants with other popular acquisition functions (PI: probability of
improvement; EI: expected improvement) with Bernoulli query policy. We observe that our
method suffers from a minor regret loss when using 50% query cost (CT = 250), whereas
other baselines with Bernoulli strategy lead to a larger performance loss. We then visualize
the final GP models in Figure 2 (ϵ = 0.03). In particular, CE-GP-UCB maintains a similar
posterior mean and variance for the unknown function compared with TV-GP-UCB with
full observations and skips the queries when chosen candidates are close to the optimal ones.
By contrast, TV-GP-UCB with Bernoulli strategy skips the queries even when the selected
points are far from the optimal ones, thus leading a larger regret.

5.2 Self-Tuning Networks

To further study the effectiveness of our algorithm in real applications, we first evaluate the
proposed method in adjusting the tuning schedule for self-tuning networks (Lorraine and
Duvenaud, 2018) (STN). STN is an online HPO algorithm that uses a hypernetwork (Ha
et al., 2017) to approximate the inner loop of bilevel optimization. Standard STN tunes
hyperparameters (e.g., dropout, weight-decay and data augmentation) by alternating the
following two steps (i.e., train/val=1:1): (1) (training phase) train one mini-batch data on
training set; (2) (tuning phase) evaluate one mini-batch data on held-out validation set then
backpropagate gradients through the hypernetwork to update hyperparameters. However,
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Figure 3: (a) Validation accuracy and & (b) validation loss for STN with different tuning
schedules. (c) Trade-offs between validation loss and corresponding training time (excluding
querying cost).

we found that STN is sensitive to different tuning schedules and standard “dense tuning”
is expensive and sub-optimal.

Table 1: Comparison with conventional MAB al-
gorithms for STN (VGG16 on CIFAR-10).

ℓval Accval ℓtest Acctest Ttotal

Grid Search 0.421 0.887 0.444 0.879 11.69 ×

Ber(0.1)

EXP3.R 0.466 0.841 0.479 0.835 0.93 ×
ϵ-greedy 0.419 0.864 0.438 0.859 0.92 ×
Softmax 0.433 0.854 0.459 0.846 0.93 ×
UCB 0.447 0.869 0.451 0.867 0.94 ×
GP-UCB 0.422 0.877 0.449 0.868 0.96 ×

Ber(0.2)

EXP3.R 0.446 0.853 0.455 0.847 1.13 ×
ϵ-greedy 0.401 0.881 0.443 0.873 1.13 ×
Softmax 0.449 0.862 0.480 0.852 1.13 ×
UCB 0.398 0.878 0.421 0.871 1.13 ×
GP-UCB 0.413 0.880 0.439 0.870 1.17 ×

CE-GP-UCB (κ = 0.7) 0.390 0.888 0.428 0.881 1.10 ×
CE-GP-UCB (κ = 0.8) 0.373 0.892 0.404 0.881 1.21 ×

As a consequence, we model STN as
a two-armed bandits: “training only”
and “tuning + training”. Since tun-
ing one mini-batch data is biased, we
define the unknown objective function
as the accuracy gain on the whole val-
idation dataset, which is expensive to
obtain thus leading a large query cost.
We evaluate the proposed approach and
other TV bandit algorithms for VGG16
on CIFAR-10. Specifically, we randomly
choose 10,000 training images as the val-
idation set, and tune layerwise dropout
and data augmentation parameters, fol-
lowing Lorraine and Duvenaud (2018).
The network is trained 150 epochs with an initial learning rate 0.1. The learning rate
is decayed at 60, 100 and 120 epochs with a decay rate of 0.1.

We first consider two baselines including static schedules (MacKay et al., 2019) and a
simple switching heuristics (e.g., train:val=1:1→2:1) that occurs at 100 epochs in which
the learning rate is decayed. Since smaller learning rate is easier to cause overfitting,
we expect to find a better schedule by also decaying the tuning frequency at the late
training stage. The dashed lines in Figure 3 (a) & (b) show that the performance of STN
is sensitive to varied tuning schedules. As shown in Figure 3 (a) & (b), our approach
leads to the best performance in terms of validation accuracy and loss with only a single
run of the experiment. In Figure 3 (c), CE-GP-UCB successfully finds an efficient tuning
schedule online that saves around 20% training cost meanwhile achieving lower validation
loss. Table 1 gives a quantitative comparison between our algorithm and other baselines
including grid search and TV bandits algorithms with Bernoulli strategy. After taking
account of the cost for evaluation on the validation set, we find that the GP-UCB algorithm
with cost-efficient query rule outperforms other baselines on both validation and testing set
with modest computation overhead.
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5.3 Unsupervised Representation Learning

We evaluate our approach on tuning data augmentations in unsupervised contrastive learn-
ing. The goal of unsupervised learning is to learn meaningful representations directly from
unlabeled data since acquiring annotations is expensive. SimCLR (Chen et al., 2020) is
the state-of-the-art approach that learns representations by maximizing agreement between
differently augmented views of the same data example. It is shown in Chen et al. (2020)
that the types of data augmentations are critical in learning meaningful representations so
researchers conducted extensive ablation study in data augmentations. By contrast, we aim
to apply CE-GP-UCB in tuning the probability of randomly applying eight common data
augmentations including cropping, color distortion, cutout, flipping horizontally and verti-
cally, rotation, Gaussian blur and gray scale with one single run. We define the accuracy
gain (%) on validation set as the costly feedback. The initial probability for applying each
data augmentation is set 0.5 and the tuning range is [0, 1.0]. The forgetting rate ϵ and βt
are set as 0.01 and 1.0, respectively. We leave the implementation details of SimCLR in
Appendix B.

Table 2: Linear readout performance (Ima-
geNet100 top-1 accuracy) of ResNet50 with dif-
ferent data augmentations.

Top1 (R10) Top1 (R100) Time

Baseline 70.91 73.20 1.00 ×
TV-GP-UCB (full) 75.14 77.95 1.97 ×
TV-GP-UCB Ber(0.6) 72.15 75.31 1.64 ×
CE-GP-UCB (κ = 0.9) 74.80 77.56 1.88 ×
CE-GP-UCB (κ = 0.8) 74.77 77.62 1.71 ×
CE-GP-UCB (κ = 0.7) 74.58 77.27 1.61 ×

Human expert (Chen et al., 2020) 75.00 77.99 -

Table 2 shows the linear read-
out performance for different models,
where the baseline is SimCLR with
fixed initial probability (0.5) for eight
data augmentations. As shown in
Table 2, our method reaches human
expert-level performance with one sin-
gle run of experiment and surpass base-
line (no HPO) by a large margin. More
importantly, proposed CE-GP-UCB is
able to reduce 40% query cost for vali-
dation with minor performance loss compared to TV-GP-UCB with full observations; how-
ever, TV-GP-UCB with Bernoulli strategy results in a large performance loss. It again
verifies proposed cost-efficient query rule is able to successfully maintain the most informa-
tive queries and provide an alternative BO solution when resources are limited.

6. Conclusion

Online HPO typically requires constantly evaluating on the validation set and taking gra-
dient steps w.r.t. hyperparameters, resulting in drastically higher training cost. In this
paper, we propose a novel costly feedback Bayesian optimization (BO) setting to model the
computation cost for querying the reward signals from the validation set. To keep most
informative queries and skip less informative ones, we introduce a cost-efficient GP-UCB
algorithm that automatically assesses the uncertainty of current GP model. We further ver-
ify the effectiveness of our proposed approach with extensive experiments on both synthetic
data and large-scale real world online HPO for deep neural networks.
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Appendix A. Choices of Confidence threshold κ in CE-GP-UCB

In what follows, we first give an important property induced by no overlapping between the
confidence bounds of best candidate xt and the other points x ∈ D \ {xt}.

Lemma 1 Let δ ∈ (0, 1) and xt = argmaxx∈D µ̃t−1(x)+
√
βtσ̃t−1(x), if ucb(x) ≤ lcb(xt), ∀x ∈

D \ {xt}, then picking xt at round t produces no regret with at least probability 1− δ.

Proof [Proof of Lemma 1] From previous literature, we know that, with high probability

|ft(x)− µ̃t−1(x)| ≤ β
1
2
t σ̃t−1(x). ∀x ∈ D, ∀t ≥ 1 (3)

As a result, we have µ̃t−1(x) − β
1
2
t σ̃t−1(x) ≤ ft(x) ≤ µ̃t−1(x) + β

1
2
t σ̃t−1(x) ∀x ∈ D ∀t ≥ 1.

Let x∗t = maxx∈D ft(x). If x
∗
t = xt, then the instantaneous regret rt = 0. Otherwise,

ft(x
∗)− ft(xt) ≤ µ̃t−1(x

∗
t ) + β

1
2
t σ̃t−1(x

∗
t )−

(
µ̃t−1(xt)− β

1
2
t σ̃t−1(xt)

)
≤ 0 (4)

From the definition of x∗t , we known ft(x
∗)− ft(xt) ≥ 0. So we have picking xt at round t

produces no regret with high probability.

Lemma 1 indicates that if there is no overlapping between the confidence bounds of
best candidate xt and the others, the agent can assure that xt is the optimal choice with
high probability. As a consequence, if the above condition satisfies, the agent is able to
receive no feedback meanwhile resulting in no performance loss at this time. This inspires
us to leverage the information that exists in relative magnitudes of posterior mean and
variance for the given candidates and obtain the cost-efficient query strategy, which is a
loosed condition with a confidence threshold κ ∈ (0, 1).

We know ŷt(x) follows the Gaussian distribution N (µ̃t−1(x), σ̃t−1(x)). Then we know
ŷt(xt)− ŷt(x

∗
t ) follows the distribution

N
(
µ̃t−1(xt)− µ̃t−1(x

∗
t ),

√
σ̃2
t−1(xt) + σ̃2

t−1(x
∗
t )

)
.

As a consequence,

1− Φ

− µ̃t−1(xt)− µ̃t−1(x
∗
t )√

σ̃2
t−1(xt) + σ̃2

t−1(x
∗
t )

 ≥ γt, (5)

where Φ(·) is the CDF of standard Gaussian distribution. To simplify further, we have

µ̃t−1(xt)− µ̃t−1(x
∗
t ) ≥ Φ−1(γt)

√
σ̃2
t−1(xt) + σ̃2

t−1(x
∗
t ) (6)

≥ Φ−1(γt)√
2

(σ̃t−1(xt) + σ̃t−1(x
∗
t )) . (7)
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Table A1: Comparison of CE-GP-UCB (κ = 95%) with standard TV bandits algorithms
with Bernoulli query strategy on three kinds of synthetic data.

Sine Gaussian Piecewise

RT /T CT RT /T CT RT /T CT

EXP3.S (Auer et al., 2002b) 0.384 ± 0.036 201 ± 15 0.257 ± 0.017 200 ± 11 0.437 ± 0.046 201 ± 14
ϵ-greedy (Kuleshov and Precup, 2000) 0.167 ± 0.041 198 ± 14 0.145 ± 0.026 200 ± 12 0.196 ± 0.026 199 ± 14
Softmax (Kuleshov and Precup, 2000) 0.132 ± 0.025 199 ± 13 0.159 ± 0.032 201 ± 14 0.256 ± 0.037 198 ± 14
UCB (Auer et al., 2002a) 0.084 ± 0.010 200 ± 14 0.112 ± 0.026 201 ± 15 0.172 ± 0.042 202 ± 14
GP-UCB (Srinivas et al., 2010) 0.104 ± 0.012 200 ± 14 0.139 ± 0.025 200 ± 14 0.122 ± 0.009 201 ± 12
CE-GP-UCB 0.017 ± 0.009 52 ± 7 0.038 ± 0.017 53 ± 20 0.028 ± 0.002 52 ± 5

If x∗t ̸= xt, we have

ft(x
∗)− ft(xt) ≤ µ̃t−1(x

∗
t ) + β

1
2
t σ̃t−1(x

∗
t )−

(
µ̃t−1(xt)− β

1
2
t σ̃t−1(xt)

)
(8)

≤ µ̃t−1(x
∗
t )− σ̃t−1(x

∗
t ) + β

1
2
t (σ̃t−1(x

∗
t ) + σ̃t−1(xt)) (9)

≤
(
β

1
2
t −

Φ−1(γt)√
2

)
(σ̃t−1(x

∗
t ) + σ̃t−1(xt)) . (10)

Let γt = Φ(
√
2βt), we recover the LCB-UCB rule (free no regret). If γt < Φ(

√
2βt), then

the agents suffer from a “small regret”

(
β

1
2
t −

Φ−1(γt)√
2

)
(σ̃t−1(x

∗
t ) + σ̃t−1(xt)).

In practice, we found LCB-UCB rule (Lemma 1) is a very strict rule that might has
limited effect in reducing the query cost. For instance, as shown in Table A2, we found
LCB-UCB rule is more strict than κ = 0.99.

Appendix B. Supplementary Experiments

In this section, we provide the details of experimental set-up and supplementary results.

B.1 Evaluation on Synthetic Data

Apart from BO setting where the candidates are correlated (e.g., kspace is SE or Matérn
kernels), we consider the finite-arm bandits setting where each arm is assumed independent
(i.e., kspace = I). Specifically, we consider a three-armed bandit problem where the reward
for each arm is sampled from its underlying time varying functions (σ2 = 0.01). Specifically,
we design three kinds of functions: (1) a sine curve (2) a Gaussian curve, and (3) a piecewise
step function, where the time horizon T = 2000. Figure A1 shows an example of the time-
varying functions. We compare with other TV bandits algorithms with Bernoulli sampling
policy (Sec 4.2), i.e., m ∼ Ber(0.1) incorporated, including EXP3.S (Auer et al., 2002b),
ϵ-greedy (Kuleshov and Precup, 2000), Softmax (Boltzmann Exploration) (Kuleshov and
Precup, 2000), UCB (Auer et al., 2002a) and GP-UCB (Srinivas et al., 2010). We used
the RBF kernel in GP models and the parameters (e.g., length scale) for GP are optimized
using maximum likelihood. Each experiment is repeated 100 times with different random
seeds.

14



0 250 500 750 1000 1250 1500 1750 2000
Timestep

0.0

0.2

0.4

0.6

0.8

1.0
R

ew
ar

d

(a) Sine

0 250 500 750 1000 1250 1500 1750 2000
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

(b) Gaussian

0 250 500 750 1000 1250 1500 1750 2000
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Arm 1
Arm 2
Arm 3

(c) Piecewise

Figure A1: Time-varying functions considered for the synthetic bandit experiments.
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Figure A2: Average regret RT /T for time-varying bandits algorithms on three different
synthetic data.

As shown in Table A1, we found proposed CE-GP-UCB consistently achieves lower
regrets while interacting less with the unknown functions. This is because CE-GP-UCB
automatically assesses the confidence of current policy based on current GP models and
given problems, and skips the queries if it is pretty confident the decision is correct. More-
over, compared to GP-UCB with full observations, our method saves around 97.5% queries,
which results in 40× computation cost saving in evaluating the unknown objective. Fig-
ure A2 shows how Rt/t evolves as training proceeds for different algorithms. It again verifies
cost-efficient query rule can adapt to different problems quickly and achieve lower regrets.

TV Bayesian optimization Table A2 presents numerical performance of CE-GP-UCB
on synthetic data with different confidence threshold κ. The performance is averaged over
50 independent trials. We found that CE-GP-UCB can almost recover the performance
of original TV-GP-UCB meanwhile significantly cutting off the cost for interacting with
unknown functions which is usually very expensive. Taking ϵ = 0.05 for instance, CE-
GP-UCB (κ = 0.9) reduces up to 40% queries meanwhile only suffers from 2.6% regret
loss.

B.2 Self-Tuning Networks

Figure A3 shows the training curves (loss and accuracy) under different tuning schedules.
We observed that the training curves of STN differ from standard training curves since
large amounts of data augmentations are added at the late stage of training which results
in a huge performance loss on training data. However, even though the performance is
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Table A2: Numerical performance on synthetic data. RT /T and CT denote average regret
and total cost for observing rewards. @κ denotes the confidence threshold for CE-GP-UCB
is κ. @* denotes the LCB-UCB rule (Lemma 1). We highlight the setting within 10% regret
loss compared to TV-GP-UCB with full observations. The performance is averaged over 50
independent trials.

ϵ = 0.003 ϵ = 0.005 ϵ = 0.01 ϵ = 0.03 ϵ = 0.05

RT /T CT RT /T CT RT /T CT RT /T CT RT /T CT

R-GP-UCB 0.352± 0.187 499± 0 0.371± 0.166 499± 0 0.425± 0.118 499± 0 0.516± 0.093 499± 0 0.581± 0.093 499± 0
TV-GP-UCB 0.094± 0.035 499± 0 0.126± 0.044 499± 0 0.184± 0.056 499± 0 0.305± 0.034 499± 0 0.392± 0.034 499± 0

TV-GP-UCB Ber(0.2) 0.231± 0.089 99± 8 0.275± 0.084 99± 9 0.350± 0.094 97± 9 0.561± 0.122 100± 9 0.694± 0.090 100± 8
TV-GP-UCB Ber(0.3) 0.176± 0.093 147± 9 0.218± 0.104 150± 12 0.312± 0.089 144± 10 0.485± 0.089 150± 10 0.592± 0.096 153± 10
TV-GP-UCB Ber(0.4) 0.147± 0.072 200± 10 0.186± 0.073 200± 10 0.275± 0.090 201± 11 0.428± 0.073 203± 11 0.522± 0.073 203± 9
TV-GP-UCB Ber(0.5) 0.121± 0.060 247± 10 0.160± 0.061 249± 12 0.241± 0.073 252± 12 0.382± 0.064 249± 12 0.480± 0.058 250± 12
TV-GP-UCB Ber(0.6) 0.119± 0.055 296± 9 0.144± 0.041 300± 11 0.230± 0.078 298± 11 0.363± 0.045 298± 11 0.452± 0.045 298± 12
TV-GP-UCB Ber(0.7) 0.112± 0.049 348± 10 0.151± 0.060 348± 11 0.209± 0.068 348± 10 0.335± 0.038 350± 11 0.429± 0.040 350± 9
TV-GP-UCB Ber(0.8) 0.102± 0.046 401± 9 0.140± 0.058 399± 11 0.198± 0.067 399± 9 0.328± 0.035 400± 8 0.415± 0.037 400± 7
TV-GP-UCB Ber(0.9) 0.098± 0.048 450± 7 0.132± 0.051 449± 7 0.196± 0.066 448± 7 0.311± 0.036 448± 6 0.404± 0.035 449± 7

CE-GP-UCB @0.60 0.535± 0.416 8± 5 0.558± 0.319 12± 7 0.600± 0.289 20± 11 0.642± 0.141 53± 11 0.680± 0.119 85± 17
CE-GP-UCB @0.70 0.410± 0.329 16± 11 0.435± 0.253 21± 13 0.442± 0.186 41± 25 0.504± 0.096 91± 21 0.533± 0.071 134± 21
CE-GP-UCB @0.75 0.341± 0.249 22± 17 0.367± 0.199 34± 20 0.368± 0.176 62± 27 0.441± 0.077 117± 25 0.484± 0.074 167± 30
CE-GP-UCB @0.80 0.286± 0.169 31± 27 0.297± 0.157 51± 36 0.304± 0.117 76± 27 0.387± 0.065 146± 31 0.451± 0.053 200± 30
CE-GP-UCB @0.85 0.226± 0.131 51± 41 0.248± 0.095 78± 42 0.266± 0.069 101± 46 0.356± 0.054 180± 34 0.416± 0.041 235± 35
CE-GP-UCB @0.90 0.188± 0.089 82± 73 0.202± 0.080 101± 63 0.238± 0.070 140± 48 0.322± 0.045 233± 37 0.400± 0.036 291± 30
CE-GP-UCB @0.95 0.157± 0.074 125± 77 0.161± 0.051 163± 73 0.210± 0.052 207± 60 0.307± 0.037 310± 42 0.397± 0.034 371± 29
CE-GP-UCB @0.99 0.112± 0.037 292± 104 0.128± 0.030 309± 83 0.176± 0.031 363± 60 0.295± 0.031 435± 26 0.386± 0.033 468± 15
CE-GP-UCB @* 0.103± 0.034 386± 79 0.126± 0.031 414± 50 0.168± 0.033 442± 41 0.292± 0.031 482± 11 0.384± 0.031 492± 7
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Figure A3: Learning curves on (a) training accuracy & (b) training loss under different
tuning schedules. Note that the training curves for STN is different form standard training
since at the late stage of training, large amounts of data augmentations are added to avoid
overfitting. Our proposed CE-GP-UCB finds an unique pattern that differs from static
tuning schedules or switching schedules automatically.

significantly worse on the training set (e.g., 60% to 80% training accuracy), the model still
performs well on the clean images without augmentations on the validation set and test set
(see Figure 3).

Figure A4 presents the hyperparameter schedule prescribed by the STN under different
tuning schedules. In general, the amount of noise added to the image increases as the
training proceeds to alleviate the effects of overfitting. However, we found that CE-GP-
UCB results in a slightly different pattern. Specifically, STN decreases the brightness at
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(c) CE-GP-UCB (ours)

Figure A4: The hyperparameter schedule prescribed by the STN (VGG16 on CIFAR-10).

the late training stage with CE-GP-UCB, however, it increases the brightness as other data
augmentations under static or switching tuning schedules.

B.3 Unsupervised Contrastive Representation Learning

Implementation Details for SimCLR Following Chen et al. (2020), we take ResNet-
50 (He et al., 2016) as the encoder network, and a 2-layer MLP projection head to project the
representation. We trained SimCLR with 64 GPUs on ImageNet100 (Tian et al., 2019) (100
classes of ImageNet) for 200 epochs and set the batch-size as 64× 56 = 3584. To stabilize
the training with large batch size, the LARS optimizer is adopted with the learning rate
4.8. For linear readout evaluation, a linear layer is trained from scratch for 10 epochs. We
adopt SGD optimizer with a learning rate of 10 and momentum 0.9 following Tian et al.
(2019).

Implementation Details for CE-GP-UCB We integrate CE-GP-UCB algorithm into
the popular botorch library (Balandat et al., 2019) for higher efficiency and stable per-
formance. Specifically, we use Matern5/2 and set the forgetting rate as ϵ = 0.01. To find
all the local optima, we randomly initialize 50 locations and use L-BFGS algorithm (Liu
and Nocedal, 1989) to find the local optima. Furthermore, we use meanshift (Cheng, 1995)
algorithm to suppress close candidates with a bandwidth of 0.2. To avoid catastrophic per-
formance loss and misleading signals by some extremely biased decision, we clip the reward
signals between [−2, 2] and set the minimal probability to apply the cropping as 0.5.
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